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ABSTRACT 
This work estimates analytically, the vibration induced in a simply supported pipeline with fluid flow, 

and assesses the vibration for its adequacy as base excitation signal for power harvesting 

transducer. The work is based on the model of the fourth order Partial and Ordinary Differential 

Equations without its Coriolis component. The Algorithms for the analytical solution of the FIV 

models are developed using the variable separation method, and lateral acceleration then simulated 

using MATLAB. The Fast Fourier Transforms of the obtained vibrations (acceleration) at different 

positions along the pipeline indicates that frequency and amplitude vary for different positions. For 

a set of adopted pipeline parameters and at a fluid flow velocity of 2 m/s, the maximum frequency is 

obtained at the centre of the pipe with amplitude of 10.64 m/s2 at frequency of 41Hz. The values fall 

within the acceptable range of vibration that can be used for power harvesting applications. 
 

 . 

 

1. INTRODUCTION 

Energy has been essential in building up modern society. 

It is required everywhere and can be found from many 

different places in a different form. According to the 

Energy Theory, energy will never disappear, but they can 

be converted from one form to the other. Among many 

types of energy, electricity is the mostly needed for 

modern devices. Many researches are investigating 

methods of obtaining electrical energy from the ambient 

environment (AbdRahman 2011 , Huidong 2014, Zhang 

H 2015, Cao 2017) in the non-traditional ways, termed 

energy harvesting-Energy harvesting relates to the 

practice of scavenging small amounts of energy from 

ambient environmental sources such as wind, water, heat 

or vibrations in order to power either some small, low 

power electronic system directly, or to charge an electrical 

storage reservoir (usually a rechargeable battery or 

capacitor) that can be used to power a higher power 

application at time intervals.  

 

Vibration energy is ubiquitous and potentially suitable for 

energy harvesting in numerous aspects of human 

experience, including natural events (seismic motion, 

wind, water tides) (Czerwinski 2014), common household 

goods (fridges, fans, washing machines, microwave ovens 

etc.), (Sojan 2016) industrial plant equipment, moving 

structures such as automobiles and aero planes, structures 

such as buildings, pipelines and bridges. Pipelines form 

one of the global structures, and the most efficient and 

cost-effective means of fluid transportation. They are 

mainly situated at remote or inaccessible area, where 

monitoring and surveillance of the pipe can be difficult. If 

sensors are use in such situations accessing the sensors to 

replace battery can be difficult. Therefore, harvesting 

energy from the environment can be one of the best 

options for continuous operation of the sensors. 

 

A common existing model for the study of piezoelectric 

generators is the one based on the single-degree-of 

freedom (SDOF) modelling approach proposed by 

(Daqaq 2009) and (DuToit 2005), and is based on the 

configuration shown in Figure 1. This model requires two 

major inputs: the base excitation acceleration (�̈�𝑏), and the 

tuned frequency of the piezoelectric generator model. It is 

common to use arbitrary sinusoidal signal without 

consideration for the broadband nature of a flow induced 

vibration (FIV).  

 
 

Figure 1: Configuration of a piezoelectric bimorph 

excited by a flow induced vibration in a pipeline 
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The study of flow induced vibration (FIV) in pipelines for 

power harvesting is not well looked into, the few current 

related works (Arafa 2010, Eziwarman, Forbes et al. 2012, 

Abd El-Mageed 2014) have not fully considered the 

sensitivity dependence of the pipeline on support and 

boundary conditions, such as simply supported, cantilever 

support, fixed ends supports and so on. As part of 

contributions to the literature in the understanding of the  

 

 

effects of types of supports on the power harvesting from 

FIV in pipelines, this work will -study analytically, pipe 

flow induced vibrations in a simply supported pipeline 

span, and assess the resulting signals for power harvesting 

application. The study would consider flow induced 

vibration in a simply supported pipeline using available 

model of flow induced vibration in a pipeline based on the 

Euler-Bernoulli beam theory, and then develops an 

analytical algorithm to obtain and quantify the vibration 

signal, principally its lateral acceleration. The simulations 

would be from first principle, using MATLAB. The 

generated signals from simulations will be analysed 

statistically and with Fast Fourier Transform (FFT) to 

assess its adequacy for base excitation applications in 

power harvesting. 

 

In the following Section of this work, details of the 

materials and methods are presented, while in Section 3, 

the trends from the simulations are presented, followed by 

a discussion of the trends and the simulations in Section 4. 

The conclusions and recommendations resulting from the 

study are presented in Section 5. 

 

2. MATERIALS AND METHODS 

The major materials for this work are deflection model of 

a fluid conveying pipeline, and computing facilities and 

MATLAB software with statistical tools and Fourier 

analysis tools. The methods employed include the 

presentation and analytical solution of the deflection 

model and the simulation and generation of the excitation 

signals based on the analytical solutions (covered in this 

Section), and the analyses of the generated signals using 

statistical and Fourier analyses tools, the presentations 

and discussions of the observed trend from the 

simulations (covered in Section 3). These steps are 

represented in Figure 2.  

 

 

 

3. DEFLECTION MODEL OF A PIPELINE 

CONVEYING FLUID 

Consider a pipeline span segment shown in Figure 3, with 

homogeneous material properties and constant cross 

section that has a transverse deflection 𝑦 from its 

equilibrium position. The length of the pipe is 𝐿, with 

internal pipe cross section 𝐴, modulus of elasticity 𝐸 and 

area moment of inertia 𝐼. The pipe’s mass per unit length 

is 𝑚𝑝 and the density of the fluid flowing through it is 𝜌𝑓 

at a constant velocity 𝑣. The fluid is assumed to have a 

uniform velocity profile and incompressible. 

 
Figure 2: A fluid conveying pipeline with simple end 

supports 

 

The governing equation for the transverse 
displacement y of the pipe with respect to time t and 
axial distance x is a nonlinear fourth order partial 
differential equation given by (Faal 2011, Avcar 2014)

 

 

Where the force components of Equation (1) are defined 

as follow: 

𝐸𝐼
𝜕4𝑦

𝜕𝑥4 represents the elastic force experienced by 

material as it vibrates. 

𝜌𝑓𝐴𝑣2 𝜕2𝑦

𝜕𝑥2. represents the centrifugal force. 

2𝜌𝐴𝑣
𝜕2𝑦

𝜕𝑥𝜕𝑡
 is the Coriolis component which represents 

the force required to rotate the fluid element as 

each point in the span rotates with an angular 

velocity. 

(𝑚𝑝 + 𝜌𝑓𝐴)
𝜕2𝑦

𝜕𝑡2 represents the inertial term or 

acceleration term. 

The deflection Equation (1) is both an initial value, and a 

boundary value problem. The Coriolis force in the 

equation does not dissipate energy or supply any energy 

in a conservative system (Chen 1985). Thus, by ignoring 

the Coriolis term, the approximate governing equation for 

flow induced vibration in a pipeline approximates to: 

 

Obtain the analytical solution of pipeline deflection 
equation 

Simulate the flow induced vibration (transverse 
acceleration) for the pipe

analyse vibration obtained for use as base excitation

  𝐸𝐼
𝜕4𝑦

𝜕𝑥4
+ 𝜌𝑓𝐴𝑣2

𝜕2𝑦

𝜕𝑥2
+ 2𝜌𝐴𝑣

𝜕2𝑦

𝜕𝑥𝜕𝑡

+ (𝑚𝑝 + 𝜌𝑓𝐴)
𝜕2𝑦

𝜕𝑡2
= 0 

(1) 

Figure 3: Computational algorithm of the output 

acceleration 
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 𝐸𝐼
𝜕4𝑦

𝜕𝑥4
+ (𝑚𝑝 + 𝜌𝑓𝐴)

𝜕2𝑦

𝜕𝑡2
+ 𝜌𝑓𝐴𝑣2 𝜕2𝑦

𝜕𝑥2
= 0 (2) 

 

Equation (2) may be solved analytically or numerically 

for the lateral deflection, 𝑦, lateral velocity �̇�, and lateral 

acceleration �̈�, for all positions along the pipeline. 

 

 

Analytical solution of the equation can be complex, 

especially since different configurations (different 

boundary and initial conditions) require different 

solutions. A simpler mass-spring-model description of the 

system requiring simpler solution is often adopted. Such 

simplifications can be found in the works of (Castillo 

2001, Tiana 2016). However, this simple approach may 

not always provide solutions which are in very good 

agreement with real measurements. In this work, an 

analytical solution method is employed to study the lateral 

vibrations of the pipeline. The analytical solution of the 

deflection equation (2) is carried out using separation of 

variables method of solving partial 

differential equations and is presented in the following 

sub-Section.

4.ANALYTICAL SOLUTION OF THE 

DEFLECTION EQUATION 

The particular solution of equation (2) depends on the 

boundary and initial conditions of the pipe. For freely 

supported (pin-pin) configuration, the boundary 

conditions (its deflection and bending moment at both 

ends of the pipe) and its initial conditions (initial 

deflections under its weight) are shown in Table 1. 

 

Table 1: Boundary and initial conditions for pin-pin 

support 

Boundary 

Conditions 

Boundaries 

Deflection 
𝑦|(0,𝑡) = 0 𝑦|(𝐿,𝑡) = 0 

Boundaries 

Bending 

moment 

𝐸𝐼
𝜕2𝑦

𝜕𝑥2
|

(0,𝑡)

= 0 
𝐸𝐼

𝜕2𝑦

𝜕𝑥2
|

(𝐿,𝑡)

= 0 

Initial 

Conditions 

Initial 

Deflection 

𝑦|(𝑥,0) = 𝑓(𝑥)

=
𝑤𝑥

24𝐸𝐼
(2𝐿𝑥2  

−  𝐿3  −  𝑥3) 

 

Initial 

Velocity 

𝜕𝑦

𝜕𝑡
|

(𝑥,0)
= 0  

 

where 𝑤 is weight per unit length of the pipeline. 

 

Equation (2) can be written as: 

𝜕4𝑦

𝜕𝑥4
+ 𝑎

𝜕2𝑦

𝜕𝑡2
+ 𝑏

𝜕2𝑦

𝜕𝑥2
= 0 (3) 

where 

𝑎 = 𝜌𝑓𝐴𝑣2 𝐸𝐼⁄  𝑏 = (𝑚𝑝 + 𝜌𝑓𝐴) 𝐸𝐼⁄  

Using separation of variables method (Stroud 2003), a 

trial solution of Equation (3) may be written as: 

𝑦(𝑥, 𝑡) = 𝑋(𝑥)𝑇(𝑡) (4) 

𝑋(𝑥) accounts for the lateral deflection with position 

only and 𝑇(𝑡) accounts for the lateral deflection with 

time only. Therefore, differentiating Equation (3) by 

parts and substituting in Equation (2) gives: 

 
𝑇𝑋𝑖𝑣 + 𝑎𝑇𝑋′′ + 𝑏𝑋�̈� = 0 (5) 

By variables separation, Equation (5) may be written as: 

1

𝑇
(𝑏�̈�) =

−1

𝑋
(𝑋𝑖𝑣 + 𝑎𝑋′′) = 𝜆 (6) 

Equation (6) can be separated into two Ordinary 

Differential Equations (ODE) as: 

𝑏�̈� − 𝑇𝜆 = 0 (7) 

𝑋𝑖𝑣 + 𝑎𝑋′′ + 𝑋𝜆 = 0 (8) 

Since the problem is a vibratory one, physics requires that 

𝜆 must be negative. Therefore, the characteristics 

equations for the ODEs above are given as: 

𝑏𝑛2 + 𝜆 = 0 (9) 

𝑚4 + 𝑎𝑚2 − 𝜆 = 0 (10) 

Where 𝑝2 = 𝑚4 

The roots of Equation (9) are: 

𝑛 = ±𝑗√𝜆 𝑏⁄  (11) 

The roots of Equation (10) are: 

 𝑚1 = ±√(
−𝑎 + √𝑎2 + 4𝜆

2
) ;  𝑚2

= ±𝑗√(
−𝑎 − √𝑎2 + 4𝜆

2
) 

(12) 

Therefore, the general solutions of the ODEs should be: 

𝑇(𝑡) = 𝐴1𝑐𝑜𝑠(𝑛𝑡) + 𝐴2𝑠𝑖𝑛(𝑛𝑡) (13) 

�̇�(𝑡) = −𝐴1𝑛𝑠𝑖𝑛(𝑛𝑡) + 𝐴2𝑛𝑐𝑜𝑠(𝑛𝑡) (14) 

𝑋(𝑥) = 𝐵1𝑐𝑜𝑠ℎ(𝑚1𝑥) + 𝐵2𝑠𝑖𝑛ℎ(𝑚1𝑥) + 𝐵3𝑐𝑜𝑠(𝑚2𝑥)

+ 𝐵4𝑠𝑖𝑛(𝑚2𝑥) 
(15) 

𝑋′(𝑥) = 𝐵1𝑚1𝑠𝑖𝑛ℎ(𝑚1𝑥) + 𝐵2𝑚1𝑐𝑜𝑠ℎ(𝑚1𝑥)

− 𝐵3𝑚2𝑠𝑖𝑛(𝑚2𝑥) + 𝐵4𝑚2𝑐𝑜𝑠(𝑚2𝑥) 
(16) 

𝑋′′(𝑥) = 𝐵1𝑚1
2𝑐𝑜𝑠ℎ(𝑚1𝑥) + 𝐵2𝑚1

2𝑠𝑖𝑛ℎ(𝑚1𝑥)

+ 𝐵3𝑚2
2𝑐𝑜𝑠(𝑚2𝑥) + 𝐵4𝑚2

2𝑠𝑖𝑛(𝑚2𝑥) 
(17) 
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Applying the boundary conditions for pin-pin support 

(From Table 1) at 𝑋(0) gives: 

𝐵1 = 𝐵3 = 0 (18) 

Also, applying the boundary conditions 𝑋(𝐿) = 0 

gives: 

𝐵2 = 0 (19) 

𝐵4𝑠𝑖𝑛𝑚2𝐿 = 0 (20) 

Non-trivial solution of Equation (20) requires that: 

𝑚2𝐿 = 𝜋, 2𝜋, … , 𝑟𝜋    𝑟 = 1, 2, 3, … (21) 

⇒ 𝑚2 = 𝛼𝑟 = 𝜋𝑟 𝐿⁄   

Therefore, 

𝜆 =
1

4
[(

2𝜋2𝑟2

𝐿2
+ 𝑎)

2

− 𝑎2] =
𝜋2𝑟2

𝐿2
(

𝜋2𝑟2

𝐿2
+ 𝑎) (22) 

And, 

𝑛 = 𝜔𝑟 = √
𝜆

𝑏
= √

𝜋2𝑟2

𝑏𝐿2
(

𝜋2𝑟2

𝐿2
+ 𝑎)

=
𝜋𝑟

𝐿
√

1

𝑏
(

𝜋2𝑟2

𝐿2
+ 𝑎) 

(23) 

Therefore, the general expression for the lateral 

deflection can be written as: 

𝑦(𝑥, 𝑡) = 𝐵4𝑠𝑖𝑛𝛼𝑟𝑥(𝐴1𝑐𝑜𝑠𝜔𝑟𝑡 + 𝐴2𝑠𝑖𝑛𝜔𝑟𝑡) (24) 

The expressions for 𝛼𝑟 and 𝜔𝑟 for the first five modes 

are given in Table 1 below 

Table 2: Eigenvalue expressions for some modes of 

pin-pin configuration 

𝑟 𝛼𝑟 

Eigenvalues (𝜔𝑟) 

Rad/s 
Hertz Dimensionle

ss 

1 

𝜋

𝐿
 𝜋

𝐿
√

1

𝑏
(

𝜋2

𝐿2
+ 𝑎) 

1

2𝐿
√

1

𝑏
(

𝜋2

𝐿2
+ 𝑎) 𝜋𝐿√(

𝜋2

𝐿2
+ 𝑎) 

2 

2𝜋

𝐿
 2𝜋

𝐿
√

1

𝑏
(

4𝜋2

𝐿2
+ 𝑎) 

1

𝐿
√

1

𝑏
(

4𝜋2

𝐿2
+ 𝑎) 2𝜋𝐿√(

4𝜋2

𝐿2
+ 𝑎) 

3 

3𝜋

𝐿
 3𝜋

𝐿
√

1

𝑏
(

9𝜋2

𝐿2
+ 𝑎) 

3

2𝐿
√

1

𝑏
(

9𝜋2

𝐿2
+ 𝑎) 3𝜋𝐿√(

9𝜋2

𝐿2
+ 𝑎) 

4 

4𝜋

𝐿
 4𝜋

𝐿
√

1

𝑏
(

16𝜋2

𝐿2
+ 𝑎) 

2

𝐿
√

1

𝑏
(

16𝜋2

𝐿2
+ 𝑎) 4𝜋𝐿√(

16𝜋2

𝐿2
+ 𝑎) 

5 

5𝜋

𝐿
 5𝜋

𝐿
√

1

𝑏
(

25𝜋2

𝐿2
+ 𝑎) 

5

2𝐿
√

1

𝑏
(

25𝜋2

𝐿2
+ 𝑎) 5𝜋𝐿√(

25𝜋2

𝐿2
+ 𝑎) 

 

The more general expression for the lateral deflection 𝑦 

and lateral velocity �̇� are: 

𝑦(𝑥, 𝑡) = ∑ 𝑠𝑖𝑛𝛼𝑟𝑥(𝑃𝑟𝑐𝑜𝑠𝜔𝑟𝑡 + 𝑄𝑟𝑠𝑖𝑛𝜔𝑟𝑡)

∞

𝑟=1

 (25) 

�̇�(𝑥, 𝑡) = ∑ 𝜔𝑟[𝑠𝑖𝑛𝛼𝑟𝑥][−𝑃𝑟𝑠𝑖𝑛𝜔𝑟𝑡

∞

𝑟=1

+ 𝑄𝑟𝑐𝑜𝑠𝜔𝑟𝑡] 

(26) 

Applying initial conditions, of Table 1 give: 

𝑦|(𝑥,0) = 𝑓(𝑥) = ∑ 𝑃𝑟𝑠𝑖𝑛𝛼𝑟𝑥

∞

𝑟=1

 (27) 

�̇�|(𝑥,0) = 0 = ∑ 𝜔𝑟𝑄𝑟𝑠𝑖𝑛𝛼𝑟𝑥

∞

𝑟=1

⟹ 𝑄𝑟 = 0 (28) 

From Fourier series technique (Stroud & Booth, 2003), 

𝑃𝑟  is twice the mean of ∫ 𝑓(𝑥)
𝐿

0
𝑠𝑖𝑛𝛼𝑟𝑥𝑑𝑥, so we can 

write: 

𝑃𝑟 =
2

𝐿
∫ 𝑓(𝑥)

𝐿

0

𝑠𝑖𝑛𝛼𝑟𝑥𝑑𝑥 (29) 

Thus: 

𝑃𝑟 (
12(𝐿)(𝐸𝐼)

𝑤
) = ∫ (2𝐿𝑥3  −  𝐿3𝑥 

𝐿

0

−  𝑥4) 𝑠𝑖𝑛
𝑟𝜋

𝐿
𝑥𝑑𝑥 

(30) 

Integration by parts give: 

𝑃𝑟 (
12(𝐿)(𝐸𝐼)

𝑤
) =  [

( 𝐿4𝑥 − 2𝐿2𝑥3  +  𝐿𝑥4)

𝑟𝜋
𝑐𝑜𝑠

𝑟𝜋

𝐿
𝑥

+
(6𝐿3𝑥2  −  𝐿5  −  4𝐿2𝑥3)

𝑟2𝜋2
𝑠𝑖𝑛

𝑟𝜋

𝐿
𝑥

+
(12𝐿4𝑥 − 12𝐿3 𝑥2  )

𝑟3𝜋3
𝑐𝑜𝑠

𝑟𝜋

𝐿
𝑥

+
(24𝐿4𝑥 − 12𝐿5 )

𝑟4𝜋4
𝑠𝑖𝑛

𝑟𝜋

𝐿
𝑥

+
24𝐿5

𝑟5𝜋5
𝑐𝑜𝑠

𝑟𝜋

𝐿
𝑥]

0

𝐿

 

(31) 

Therefore, 

 𝑃𝑟 =  (
2𝑤𝐿4

𝜋5𝐸𝐼
) (

1

𝑟5
) (𝑐𝑜𝑠𝜋𝑟 − 1) (32) 

Therefore, the expressions for lateral deflection, lateral 

velocity and lateral acceleration are given respectively 

as: 
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𝑦(𝑥, 𝑡) = ∑( 𝑃𝑟𝑠𝑖𝑛𝛼𝑟𝑥)(𝑐𝑜𝑠𝜔𝑟𝑡)

∞

𝑟=1

 (33) 

�̇�(𝑥, 𝑡) = − ∑(𝑃𝑟𝜔𝑟𝑠𝑖𝑛𝛼𝑟𝑥)(𝑠𝑖𝑛𝜔𝑟𝑡)

∞

𝑟=1

 (34) 

�̈�(𝑥, 𝑡) = − ∑(𝑃𝑟𝜔𝑟
2𝑠𝑖𝑛𝛼𝑟𝑥)(𝑐𝑜𝑠𝜔𝑟𝑡)

∞

𝑟=1

 (35) 

 

5. SIMULATION AND ANALYSIS OF THE 

PIPELINE FIV 

The analytical solutions of the FIV model of a simply 

supported pipeline derived in Equations 33-35 are 

simulated in MATLAB. The simulation are performed 

based on a single pipeline span with the parameters 

specified in (Arafa 2010) and given in Table 3. 

Table 3: Material properties of the pipe and fluid 

FIV Properties 
Faal R T & Derakshan D 

(2011) 

Yunfeng  et al (2020) Arafa M et al (2010) 

Density of pipe, 𝜌𝑝 (kg/m3) 7747 7850 8500 

Density of fluid, 𝜌𝑓 (kg/m3) 997 999.8 1.225 

Length of the pipe, 𝐿 (m) 2 4 1.7 

Modulus of elasticity, 𝐸 (GPa) 207 200 100 

Pipe outer diameter, 𝐷0 (m) 0.054 0.3556 0.05 

Pipe inner diameter, 𝐷𝑖  (m) 0.05 0.3376 0.0488 

 

The simulations are approached as a three-dimensional 

problem using matrix computations, where each 

calculated displacement, velocity or acceleration is linked 

to a combination of defined mode (𝑟), position along the 

pipeline (𝑥), and time (𝑡). Therefore, the simulation 

specifies a spectrum of 𝑛 modes, and divides the pipeline 

length into 𝑁𝑥 segments (𝑁𝑥 + 1 nodes), and the 

simulation time into 𝑁𝑡 segments (𝑁𝑡 + 1 nodes). The 

simulation proceeds by first calculating purely modal 

values 𝜔𝑟 and 𝜆𝑟 such that 𝜔𝑟 ∈ ℝ𝑛×1 and 𝜆𝑟  ∈ ℝ𝑛×1. 

Using the calculated modal values vectors, the 2-D 

modal-position computation of amplitudes 𝐴𝑥, 𝐵𝑥 and 𝐶𝑥 

are calculated such that 𝐴𝑥 ∈ ℝ𝑛×(𝑁𝑥+1), 𝐵𝑥 ∈ ℝ𝑛×(𝑁𝑥+1) 

and 𝐶𝑥  ∈ ℝ𝑛×(𝑁𝑥+1). These are followed by 2-D modal-

time computations of 𝑐𝑜𝑠𝜔𝑟𝑡 and 𝑠𝑖𝑛𝜔𝑟𝑡 such that 

𝑐𝑜𝑠𝜔𝑟𝑡 ∈ ℝ(𝑁𝑡+1)×𝑛 and 𝑠𝑖𝑛𝜔𝑟𝑡  ∈ ℝ(𝑁𝑡+1)×𝑛. 

Thereafter, the 3-D dimensional array of values of lateral 

displacements 𝑦(𝑥, 𝑡), lateral velocity �̇�(𝑥, 𝑡) and lateral 

acceleration �̈�(𝑥, 𝑡). For each mode, the acceleration array 

has dimension �̈�(𝑥, 𝑡) ∈ ℝ(𝑁𝑡+1)×(𝑁𝑥+1). So, the total 

acceleration for the spectrum is the summation of the 

acceleration for the individual modes. Finally, the trends 

from the simulations are plotted and statistical and Fast 

Fourier Transform (fft) performed to investigate the 

predicted vibrations for piezo-electric application  

 

6. PRESENTATION OF TRENDS AND 

DISCUSSIONS 

Note that from Equation (37) that  𝑃𝑟 = 0 at 𝑟 = 2, 4, 6,
⋯, the first, second, third and higher modes in a spectrum 

occur when 𝑟 = 1, 3, 5, ⋯. Using the frequency 

equations of Table 2 and parameters of Table 3, the 

natural frequencies for 𝑣 = 0 obtained from this study 

compared to those of Faal R T & Derakshan D (2011), 

Yunfeng L et al (2020) and Arafa et al. (2010) for the first 

five modes of a spectrum are given in Table 4. 

Table 4: Comparing Results 

 

This Study 

Faal R T & 

Derakshan D 

(2011) 

Mo

de 
𝜔𝑟 

(Rad

/s) 

𝜔𝑟 

(Her

tz) 

𝜔𝑟 

(Dimensio

nless) 

𝜔𝑟 

(Her

tz) 

𝜔𝑟 

(Dimensio

nless) 

1 176 28 10  4.1992 

2 705 112 39  11.577 

3 1586 252 89  22.696 

4 2819 449 158  37.519 

5 4405 701 247  56.047 

Mo

de 
This Study 

Yunfeng L et al 

(2020) 

1 
269.

5 
41.3 9.9  9.8696 

2 
1038

.0 

165.

2 
39.5  39.4784 

3 
2335

.4 

371.

7 
88.8  88.8264 

4 
4151

.8 

660.

8 
157.9  157.9137 

5 
6487

.2 

103

2.5 
246.7  - 

Mo

de 
This Study Arafa et al. (2010) 

1 
204.

3 
32.5 9.9 74.3  

2 
817.

2 

130.

1 
39.5 

203.

7 
 

3 
1838

.7 

292.

6 
88.8 

399.

0 
 

4 
3268

.9 

520.

3 
157.9 -  

5 
5107

.6 

812.

9 
246.7 -  
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The values of the natural frequencies from Yunfeng L. et 

al (2020) is in very good agreement with the present 

study. Also, the FIV parameters used in the simulation 

(steel with larger diameter and longer length) are closer to 

real situation of a pipe conveying fluid for piezo-electric 

application and the parameters would be used for the rest 

of this study. A fluid flow velocity of 2 m/s would also be 

adopted as it is much lower than the critical velocity for 

the adopted configuration. 

 

Using the parameters of Yunfeng L. et al (2020), the 3-D 

acceleration plot in time series for the spectrum is shown 

in Figure 4. The figure shows that the lateral acceleration 

is symmetrical about the mid-point of the pipeline, and it 

ranges from 0 at the supports, to about ±15 𝑚/𝑠2 at the 

centre. 

 
 

Figure 4: Lateral acceleration of the pipeline with respect 

to time and position along the pipeline

 

 

Two important information about the vibration 

environment are the acceleration amplitude and 

frequency. The acceleration determines the base 

excitation force (Basem 2015) (see Figure 2) while the 

frequency determines the tuning frequency of the piezo- 

electric generator. The trends of these two pieces of 

information are observed closely in this Section. 

 

 

To see more closely the distribution of the acceleration 

along the pipe, it is divided into 12 equally spaced 

segments, or 13 points nodes along its length, as shown in 

Figure 5 (the number of segments is arbitrary, it could be 

more or less). The acceleration at the nodes is given in 

Figures 6 and 7 below.  

 

 

1 53 7 9 112 4 6 8 10 12 13

  

Figure 5: Nodes along the pipeline 

 

a 

 

 b 

c 
 

d 

e f 

Figure 6: 2-D acceleration along the nodes of the pipeline (a – f) 
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a b 

c d 

e 

 

  

Figure 7: 2-D acceleration along the nodes of the pipeline (a – e) 

 

The time series plots of Figures 6 and 7 show that the 

highest acceleration magnitudes occur at the centre of the 

pipeline (position 7 of Figure 7) and followed by nodes 

around the centre (position 6 and 8, 5 and 9 of Figure 7), 

and decrease towards the end of the pipeline (positions 4 

and 10, 3 and 11 and 2 and 12 of Figure 6). The Figures 

show that for this configuration, excitation acceleration of 

up to 15 m/s2 can be obtained at some locations along the 

pipe. 

 

The time series of the two figures reveal only the 

magnitudes of the accelerations at these points and not 

more. To gain further insights, the Fast Fourier transforms 

(FFT) of the accelerations at these points are performed. 

To perform the FFT to cover the first five modes of the 

spectrum, we choose the sampling frequency to be at least 

1200 Hz (at least twice the frequency of the last mode in 

the range of interest), in order to obtain a double-sided 

amplitude spectrum plots. With a chosen sampling 

frequency of 1200 Hz, values of frequency and associated 

amplitudes are presented in Table 5, while the single-

sided amplitude spectrum plots of the FFT of the 

acceleration at the points are presented in Figures 8 and 9. 

 

The plots show that the pipeline vibration frequency 

varies in amplitude at different positions along the pipe. 

In Figure 8, plots, positions 2 and 12, 3 and 11, and 4 and 

10 are at symmetrical opposite points along the pipe 

respectively (see Figure 5). Likewise, in Figure 9, 

positions 5 and 9, 6 and 8 are at symmetrical opposite 

points along the pipe respectively. Position 7 is the mid-

point. The figures show that piezo-electric generator 

tuned to a frequency of 41 Hz may be best located at the 

mid-point of the pipe, where the acceleration amplitude to 

up to 10.64, and the least desirable positions are those 

close to the end point, where acceleration amplitude is as 

low as 4.085. For higher frequency tuning of 371.7 Hz, 

locations towards the end points are better, where 

amplitude at this frequency is up to 4.082. Piezo-electric 

generator tuned to higher frequency than the above may 

be inappropriate for this configuration since amplitudes 

are very small at higher frequencies for all positions. 

 

Table 5: Frequency and Amplitude at different positions along the pipeline 

Frequency Position along the pipeline and frequency amplitudes 

(Hz) 2 3 4 5 6 7 8 9 10 11 12 

41 4.08 6.27 8.11 9.51 10.37 10.64 10.15 9.10 7.54 5.57 3.30 

372 3.41 3.51 1.93 0.57 2.79 3.57 2.15 0.30 2.61 3.67 2.98 

708 0.29 - 0.30 0.53 0.71 0.29 - 0.30 0.53 0.71 0.76 

1033 1.70 - 1.69 1.30 0.71 1.70 - 1.69 1.30 0.71 1.84 
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Figure 8: FFT plots along the nodes of the pipeline for positions 2, 3, 4, 10, 11 and 12 

 

 

  

  

 

 

Figure 9: FFT plots along the nodes of the pipeline for positions 5, 6, 7, 8, and 9 
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Figure 10 is the combined FFT plot for the chosen 

configuration. The captured frequencies for the shown 

spectrum are 41, 372, 708 and 1033 Hertz. The plot shows 

that for any point, the best tuning frequency is 41 Hz, 

followed by 372 Hz.  

 

 
Figure 10: double sided amplitude spectrum of the 

pipeline vibration signal 

 

The harvested power depends on the base excitation at the 

harvester location and therefore, the best position is at 

where an increase in pipe excitation is observed to offer 

an increased in harvested power. The highest power 

occurs when the pipe frequency matches the harvester 

frequency.  

 

Most vibration data or signals used for vibration 

harvesting use harmonic signal (Marco Ferrari ; Vittorio 

Ferrari 2008), which is far from the common wide band 

vibration signal, but (Zero-Power 2015) proposes random 

signal and characterises the signal using exponential 

correlation noise which is a good approximation to real 

life vibration(Fox RF 1988). Therefore, the acceleration 

model in this work is also appraised using this procedure 

to ascertain its characteristics as compared to the real-

world vibration signal. The plot is as shown in Figure 11, 

analysing the vibration data distribution shows it 

approximately resembles Gaussian distribution (Pittard 

2004), similar to the distribution of signal used in the 

study of piezo-electric generators (Pittard 2004), (Zero-

Power 2015) and (Shamim 2009). 

  

 
Figure 11: Distribution of the vibration along the pipe length 

 

7. CONCLUSIONS 

A first principle, analytical approach employing the 

variable separation method has been used to estimate the 

flow induced vibration of pipeline with pin-pin 

configuration based on an approximate beam theory of 

flow induced vibration in a pipeline. Using typical 

parameters of a fluid conveying pipeline, the pin-pin 

configuration is simulated for its lateral acceleration using 

MATLAB. The analytical solution shows that the pipeline 

natural frequency modes vary from 41 Hz, 165 Hz, 372 

Hz, 660 Hz and 708Hz for Yunfeng L et al (2020) 

configuration. The simulated lateral acceleration trends 

are studied for suitability as excitation signals for piezo-

electric applications using Fast-Fourier Transform (FFT) 

and statistical Probability Density Distribution (PDF). 

The FFT analyses shows that only tuning frequencies of 

41 Hz, 372 Hz, and 708Hz are available for piezo-electric 

application, with the most one being 41 Hz, based on its 

high amplitude especially at the centre of the pipeline. The 

PDF analyses show that the distribution is gaussian, 

which has been shown in may publications to be suitable 

for piezo-electric applications. 
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