
Zaria Journal of Electrical Engineering Technology, Department of Electrical Engineering, Ahmadu Bello University, Zaria – Nigeria. 
Vol. 9 No. 2, September 2020. ISSN: 0261 – 1570. 

107 
 

SIMPLIFIED PROGRAMMING ALGORITHM FOR UNCONSTRAINED 

STATE SPACE MPC WITH STATE ESTIMATOR 
 

Mohammed Tajudeen Jimoh1, Ado Dan-Isa2 
1Department of Mechanical Engineering, Bayero University, Kano, Nigeria. 

2Department of Electrical Engineering, Bayero University, Kano, Nigeria. 

*mtjimoh.mec@buk.edu,ng 
  

 

Keywords: –   

Model predictive control,  

Optimal Control law,  

Output prediction equation, 

State estimator, 

State space 

 
Article History: –   

Received: July, 2020.  

Reviewed: August, 2020 

Accepted: September, 2020 

Published: September, 2020 

ABSTRACT 

This paper develops a simplified simulation algorithm unconstrained state space MPC that 

incorporates a state estimator for control of multivariable systems. A state space algorithm 

based on the augmented states with five tuning parameters (prediction and control horizon, 

output and input weights, and output filters), are presented. A block diagram showing the 

simulation plan is presented, together with algorithms for calculating the constant matrices 

of the MPC. Using Matlab and Matlab Simulink, the developed simulation plan is 

implemented on continuous models of two plants, a SISO system and a MIMO system. The 

implementation is simple and straight forward, presenting a very transparent state space 

MPC alternative for use by researchers.  

 . 

1. INTRODUCTION 

Model Predictive Control (MPC) is an advanced control 

method that is being employed by many industries. Its 

formulation makes it very suitable for multivariable 

processes. Also, a large collection of modern control theory 

and analysis method can be applied easily to its algorithm, 

robustness, stability and development. MPC is a receding 

horizon control based on this principle: that at a sampling 

time𝑘, information about measured plant output𝑦𝑘is used to 

calculate a sequence of 𝑀 optimal control moves 

[𝑢(𝑘), 𝑢(𝑘+1), … , 𝑢(𝑘+𝑀−1)] that ensures that a sequence of 

𝑃 predicted future outputs [�̂�(𝑘+1), �̂�(𝑘+2), … , �̂�(𝑘+𝑃)] track a 

defined set-point (or target) 𝑠𝑘optimally. For the sequence of 

optimum 𝑀 control moves calculated at a sampling time 𝑘, 

only the first control move 𝑢𝑘 is sent to the plant as the 

manipulated variable. Then the same procedure is repeated at 

the next sampling time which is usually at regular sampling 

interval 𝑡𝑠 [1]-[6]. In MPC, 𝑃 is the prediction horizon and 

𝑀 is the control horizon, and both are important MPC tuning 

parameters. There are additional three tuning parameters 

namely, the output weight 𝑤, the input weight 𝑟, and an 

output filter 𝜏. The output weight 𝑤 ≥ 0 is used to create 

controlled tracking of the output (or preferential tracking 

when there is more than one output according to their 

importance). A high 𝑤 usually results in faster tracking. 

Likewise, the input weight 𝑟 > 0 is used to suppress the 

aggressive behaviour of the manipulated input (or to 

preferentially suppress some inputs when there is more than 

one input). Usually, the higher the value of 𝑟 on an input the 

more sluggish the control. The output filter 𝜏 ensures that a 

predicted output sequence makes a gradual transition from 

the current plant output measurement 𝑦𝑘  to the defined set-

point sequence 𝑠𝑘 within the prediction horizon. We thus 

have five tuning parameters in MPC implementation namely 

P, M, w, r and 𝜏.  

State space Model Predictive Control (MPC) is so called 

because its formulation is based on the general state space 

equation. Generally, state space MPC (and other types of 

MPC) can be constrained (that is the formulation includes 

provisions for handling constraints on the inputs, the inputs 

changes, and the outputs), or unconstrained. Constrained 

MPC incorporates special optimisation quadratic 

programming technique for obtaining optimal control action. 

Unconstrained MPC on the other hand employs only simple 

linear programming to obtain optimal control actions. State 

space MPC formulations are well documented. See for 

instance [7]-[12]. 

Despite the existence of these publications and the fact that 

the principles underpinning MPC in general, and state space 

MPC in particular, is as simple as outlined above, writing 

computer programme for its implementation in the control of 

multivariable systems can be quite challenging for some 

researchers. This is especially so when deep insights are 

required into the effect of tuning parameters on the control 

actions, or on the robustness and stability analysis, on the 

analysis of numerical conditioning of its matrices, and on the 

need to reduce computational load. In addition, state space 

MPC requires a state estimator for improved control actions 

and the need to highlight this link cannot be over emphasised. 

Many researchers have to rely only on proprietary MPC 

software where their workings are sometimes opaque to the 

users. Because of this apparent disadvantage, this paper is 
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focused on developing a simplified unconstrained, State 

space MPC algorithm for use in the control of multivariable 

systems that will be easy to programme using many 

programming languages. 

The rest of the paper is organized as follows. In the 

next section, the formulation of unconstrained state 

space MPC using augmented state space models will 

be presented, followed by state estimation in Section 

3. Then a matrix-based algorithm for the MPC and the 

state observer will be presented in Section 5, while 

examples utilizing the proposed algorithm will be 

presented in Section 5. The paper ends with conclusion 

and in recommendation in Section 6 

2. MPC OBJECTIVE FUNCTION, 

PREDICTION EQUATION AND CONTROL 

LAW 

This Section gives a formulation of State space MPC, 

incorporating the five tuning parameters mention in 

Section 1. The objective function, output prediction 

equation and the optimal input law which, constitute 

the basis of MPC, are presented here for a generalised 

Multiple-Input-Multiple-Output (MIMO) system. The 

formulations are presented with careful attention to the 

dimensions of the associated matrices and vectors, 

which would be vital to the formulation of the 

simplified MPC algorithm in Section 3 

2.1 Objective Function 

For a generalised MIMO system of m outputs, q inputs in 

which the weights on the output channels are 

[𝑤1, 𝑤2, … , 𝑤m], the input weights are [𝑟1, 𝑟2, … , 𝑟q], and the 

output filters are [𝜏1, 𝜏2, … , 𝜏m], the objective function may 

be written in matrix form as [12]: 

min
∆𝑼

𝑱 = (𝑻 − �̂�)
𝑇
𝑾(𝑻 − �̂�) + (∆𝑼)𝑇𝑹(∆𝑼) (1) 

where 𝑾 ∈ ℝ𝑚𝑃×𝑚𝑃and 𝑹 ∈ ℝ𝑞𝑀×𝑞𝑀are square matrices of 

output and input weights elements respectively. These are 

defined as follows: 

𝑾 = [

𝑊𝑚 0 ⋯ 0
0 𝑊𝑚 0 0
⋮ 0 ⋱ ⋮
0 0 ⋯ 𝑊𝑚

] (2) 

𝑹 =

[
 
 
 
𝑅𝑞 0 ⋯ 0

0 𝑅𝑞 0 0

⋮ 0 ⋱ ⋮
0 0 ⋯ 𝑅𝑞]

 
 
 

 (3) 

where 𝑊𝑚 and 𝑅𝑞 are diagonal matrices whose elements are 

the outputs and inputs weights respectively and they are 

defined as: 

𝑊𝑚 = [

𝑤1 0 ⋯ 0
0 𝑤2 0 0
⋮ 0 ⋱ ⋮
0 0 ⋯ 𝑤𝑚

] (4) 

𝑅𝑞 = [

𝑟1 0 ⋯ 0
0 𝑟2 0 0
⋮ 0 ⋱ ⋮
0 0 ⋯ 𝑟𝑞

] (5) 

The reference trajectory 𝑻 ∈ ℝ𝑚𝑃×1is a column vector 

defined as: 

𝜯 = [𝑇𝑦,1, 𝑇𝑦,2, 𝑇𝑦,3, … , 𝑇𝑦,𝑃]
𝑇

+ [𝑇𝑠,1, 𝑇𝑠,2, 𝑇𝑠,3, … , 𝑇𝑠,𝑃]
𝑇
 

(6) 

where 

𝑇𝑦,𝑖 = [𝜏1
𝑖𝑦1𝑘 , 𝜏2

𝑖𝑦2𝑘 , … , 𝜏𝑚
𝑖 𝑦𝑚𝑘 , ],     𝑖 = 1, 2, … , 𝑃   (7) 

𝑇𝑠,𝑖 = [(1 − 𝜏1
𝑖)𝑠1,𝑘, (1 − 𝜏2

𝑖 )𝑠2,𝑘 , … , (1

− 𝜏𝑚
𝑖 )𝑠𝑚,𝑘],    𝑖 = 1, 2, … , 𝑃  

(8) 

Here, 𝜏𝑗
𝑖 indicates 𝜏 for output channel 𝑗 raised to 

power 𝑖, and 𝑠𝑗,𝑘 is the set point for output channel 𝑗 at 

step 𝑘. The derivation for the output prediction �̂� and 

its dimension are given in the following sub-section. 

2.2 The Output Prediction Equation 

For a proper MIMO system represented by states space 

equation of 𝑛 states, and in which the state vector 𝒙, output 

vector 𝒚 and input vector 𝒖 have dimensions 𝒙 ∈ ℝ𝑛×1, 𝒚 ∈
ℝ𝑚×1and 𝒖 ∈ ℝ𝑞×1 respectively, and given that the system 

matrix 𝑨, input matrix 𝑩 and the output matrix 𝑪 have 

dimensions 𝑨 ∈ ℝ𝑛×𝑛, 𝑩 ∈ ℝ𝑛×𝑞, 𝑪 ∈ ℝ𝑚×𝑛, the 

augmented state equation can be written as [12]: 

[
∆𝑥(𝑘+1)

𝑦(𝑘+1)
] = [

𝑨 0𝑛,𝑚

𝑪𝑨 𝐼𝑚
] [

∆𝑥𝑘

𝑦𝑘
] + [

𝑩
𝑪𝑩

]∆𝑼𝒌 

𝑦(𝑘) = [0𝑛,𝑚
𝑇 𝐼𝑚]𝑿𝒈(𝑘) 

(9a) 

or simply as: 

𝑿𝒈(𝑘+1) = 𝑨𝒈𝑿𝒈(𝒌) + 𝑩𝒈∆𝑼(𝒌) 

𝑦(𝑘) = 𝑪𝒈𝑿𝒈(𝑘) 
(9b) 

where 𝑨𝒈, 𝑩𝒈and 𝑪𝒈 are augmented matrices with the 

following dimensions: 𝑨𝒈 ∈ ℝ(𝑛+𝑚)×(𝑛+𝑚), 𝑩𝒈 ∈

ℝ(𝑛+𝑚)×𝑞, 𝑪𝒈 ∈ ℝ𝑚×(𝑛+𝑚). The new state matrix 𝑿𝒈 has 

dimension 𝑿𝒈 ∈ ℝ(𝑛+𝑚)×1, and the input change vector ∆𝑼 

has the dimension ∆𝑼 ∈ ℝ𝑞×1. 0𝑛,𝑚 is an all-zeros elements 

matrix of n rows and m columns, and 0𝑛,𝑚
𝑇  is its transpose. 

𝐼𝑚 is an identity matrix of dimension m. 

Using the augmented state models of Equation (9), the 

output prediction equation within the prediction and 
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control horizons 𝑃 and 𝑀for state space MPC can be 

written in generalised vector-matrix form as [12]: 

or simply as: 

�̂� = 𝚽∆𝑼 + 𝚪𝑿𝒈 (10b) 

where the dimensions of 𝚽, 𝜞, �̂� and ∆𝑼 are 𝚽 ∈
ℝ𝑚𝑃×𝑞𝑀,𝜞 ∈ ℝ𝑚𝑝×(𝑛+𝑚), �̂� ∈ ℝ𝑚𝑃×1and ∆𝑼 ∈ ℝ𝑞𝑀×1. 

�̂�(𝑘+𝑗)is defined as [�̂�1,𝑘+𝑗 , �̂�2,𝑘+𝑗 , �̂�3,𝑘+𝑗 , … , �̂�𝑚,𝑘+𝑗]
𝑇
 and 

∆𝑈(𝑘+𝑖) is defined as [∆𝑢1,𝑘+𝑖 , ∆𝑢2,𝑘+𝑖 , ∆𝑢3,𝑘+𝑖 , … , ∆𝑢𝑞,𝑘+𝑖]
𝑇
. 

The following sub-section gives the derivation of the 

optimum control law for calculating ∆𝑼. 

2.3 The Optimal Control Law 

For linear unconstrained MPC, the optimal control law is 

obtained by finding the least squares solution of the objective 

function of Equation (1). By substituting the prediction 

outputs Equation (10) into Equation (1), we have: 

min
∆𝑼

𝐽 = −2∆𝑼𝑇Φ𝑇𝑾𝑬 + ∆𝑼𝑇(𝚽𝑇𝑾𝚽 + 𝑹)∆𝑼

+ 𝑬𝑇𝑬 
(11) 

where 𝑬 is given as: 

𝑬 = 𝑻 − 𝚪𝑿𝒈 (12) 

The first derivative of the cost function 𝐽 gives: 

𝜕𝐽

𝜕∆𝑼
= −2𝚽𝑇𝑾𝑬 + 2(𝚽𝑇𝑾𝚽 + 𝑹)∆𝑼 = 0 (13) 

Then the optimum control law for unconstrained MPC then 

becomes: 

∆𝑈 = (𝚽𝑇𝑾𝚽 + 𝑹)−1𝚽𝑇𝑾𝑬 (14a) 

or as 

∆𝑼 = 𝑮𝑬 = 𝑮(𝑻 − 𝚪𝑿𝒈) (14b) 

where 

𝑮 = (𝚽𝑇𝑾𝚽 + 𝑹)−1𝚽𝑇𝑾 (15) 

It can be seen from the optimal control law of Equation 

(14) that for time-invariant system, 𝑮 remains constant 

throughout and 𝑻 is a vector which depends on outputs 

measurements and set points. The accuracy of the 

calculation of optimal control input ∆𝑼 for 

unconstrained case therefore depends very heavily on 

the prediction of the augmented state vector 𝑿𝒈 at 

every sampling instant. For deadbeat control (where 

the there is no model-plant mismatch), this equation is 

sufficient. But in reality, there is always model-plant 

mismatch for reasons such as the use of simplified 

process model, the use of linearized model for a non-

linear or unstable plant. Also, for real plant, the 

process states are mostly not measurable or accessible. 

For these reasons, state space MPC usually 

incorporates a state estimator or an observer. Even 

where the states are measurable, incorporating a state 

estimator in a process may serve as soft sensors, 

thereby serving as practical or economical alternative 

to actual measurement. 

3. STATE ESTIMATION EQUATIONS 

Assuming that the process is stochastic, where the process is 

excited by random white noise and the measurement contain 

random noise, such that the states equations are written as 

[10], [12], [15]: 

𝑿𝒈(𝑘+1) = 𝑨𝒈𝑿𝒈(𝒌) + 𝑩𝒈∆𝑼(𝒌) + 𝑭𝑯 

𝑦(𝑘) = 𝑪𝒈𝑿𝒈(𝑘) + 𝑵 
(16) 

where 𝑯 ∈ ℝ(𝑛+𝑚)×(𝑛+𝑚) is the auto-covariance diagonal 

matrix of the process white noise and 𝑵 ∈ ℝ𝑚×𝑚 is the auto-

covariance diagonal matrix of the measurement white noise. 

The matrix 𝑭 ∈ ℝ(𝑛+𝑚)×(𝑛+𝑚) is usually an identity matrix. 

Using the discrete-time predictor-corrector version of the 

discrete-time Kalman Filter, we can write the improved 

predicted state for the next sampling time as [10], [14]: 

�̂�𝒈(𝑘+1) = [�̂�𝒈(𝒌) + 𝑲(𝒀(𝑘) − 𝑪𝒈�̂�𝒈(𝒌))]𝑨𝒈

+ 𝑩𝒈∆𝑼(𝒌) 
(17) 

The steady state gain 𝑲 ∈ ℝ(𝑛+𝑚)×𝑚 is calculated by solving 

the following Kalman Filter equations iteratively [15]: 

𝐾(𝑘) = 𝑃𝑝(𝑘)𝑪𝒈
𝑻[𝐶𝑔𝑃𝑝(𝑘)𝑪𝒈

𝑻 + 𝑁]
−1

 (18) 

𝑃𝑐(𝑘) = [𝐼 − 𝐾(𝑘)𝑪𝒈]𝑃𝑝(𝑘) (19) 

𝑃𝑝(𝑘+1) = 𝑨𝒈𝑃𝑐(𝑘)𝑨𝒈
𝑻 + 𝐹𝐻𝐹𝑇 (20) 

where: 

𝑲(𝑘) is the Kalman gain at 𝑘th iterate 

[
 
 
 
 
 
�̂�(𝑘+1)

�̂�(𝑘+2)

�̂�(𝑘+3)

⋮
�̂�(𝑘+𝑃)]

 
 
 
 
 

=

[
 
 
 
 
 

𝑪𝒈𝑩𝒈 𝟎 ⋯ 𝟎

𝑪𝒈𝑨𝒈𝑩𝒈 𝑪𝒈𝑩𝒈 ⋯ 𝟎

𝑪𝒈𝑨𝒈
𝟐𝑩𝒈 𝑪𝒈𝑨𝒈𝑩𝒈 ⋯ 𝟎

⋮ ⋮ ⋱ ⋮
𝑪𝒈𝑨𝒈

𝑷−𝟏𝑩𝒈 𝑪𝒈𝑨𝒈
𝑷−𝟐𝑩𝒈 ⋯ 𝑪𝒈𝑨𝒈

𝑷−𝑴𝑩𝒈]
 
 
 
 
 

[
 
 
 
 

∆𝑼(𝒌)

∆𝑼(𝒌+𝟏)

∆𝑼(𝒌+𝟐)

⋮
∆𝑼(𝒌+𝑴−𝟏)]

 
 
 
 

+

[
 
 
 
 
 
𝑪𝒈𝑨

𝑪𝒈𝑨𝒈
𝟐

𝑪𝒈𝑨𝒈
𝟑

⋮
𝑪𝒈𝑨𝒈

𝑷
]
 
 
 
 
 

𝑿𝒈(𝒌) 
(10a) 
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𝑃𝑝(𝑘) (𝑃𝑝 ∈ ℝ(𝑛+𝑚)×(𝑛+𝑚)) is the auto-covariance matrix 

of the estimation error of the predicted (�̂�𝑔(𝑘)) state 

estimate.  

𝑃𝑐(𝑘) (𝑃𝑐 ∈ ℝ(𝑛+𝑚)×(𝑛+𝑚)) is the auto-covariance matrix 

of the estimation error of the corrected predicted 

(�̂�𝑔𝑐(𝑘)) state estimate. 

For linear, time-invariant model, the matrices 𝑃𝑝 and Pc each 

converge towards steady-state values, for an initial guess 

𝑃𝑝(0). The value of 𝐾(𝑘) at this steady state is the state 

estimator gain used in Equation (14). 

The error model for the corrected stated estimate is given by: 

𝑒𝑥𝑐(𝑘+1) = (𝐼 − 𝐾𝐶𝑔)𝐴𝑔𝑒𝑥𝑐(𝑘) + (𝐼 − 𝐾𝐶𝑔)𝐺𝑣(𝑘)

− 𝐾𝑤(𝑘+1) 
(21) 

In other words, the state gain matrix 𝑲 that makes 

𝑒𝑥𝑐(𝑘+1) → 0 as 𝑘 → ∞ in Equation (21) is used in the 

state estimation Equation (13). Apart from ensuring 

that �̂�𝑔(𝑘+1) → 0 as 𝑘 → ∞, 𝐾 must also be chosen 

such that the observer dynamics is much faster than 

the system 

4. ALGORITHMS FOR CALCULATING MPC 

MATRICES AND VECTORS FOR MIMO 

SYSTEMS 

From optimal control law of Equation (14), it is obvious that 

while the matrix 𝑮 is a constant and can be obtained once, 

the vector 𝑬, and by extension the vectors 𝜯 and 𝑿𝒈, have to 

be computed at each sampling instant. So, for a MIMO MPC 

implementation, the major problem concerns the ability to 

obtain these vectors at the appropriate time during the entire 

prediction period. To simplify the procedure for obtaining the 

matrices and vector, we proceed as follows: 

Let the reference trajectory vector 𝜯 for the entire prediction 

horizon 𝑃 be written generally as: 

𝜯 = 𝜶𝒀 + 𝜷𝑺 (22) 

where 𝒀 and 𝑺 are vectors of actual plant outputs and set-

points within the prediction horizon respectively. Both 𝜶 and 

𝜷 are constant matrices. 

Then, the optimum control law may be written as: 

∆𝑼 = (𝑮𝜶𝒀 + 𝐺𝜷𝑺 − 𝑮𝚪�̂�𝒈) (23a) 

or as: 

∆𝑼 = 𝑲𝒚𝒀 + 𝑲𝒔𝑺 − 𝑲𝒙�̂�𝒈 (23b) 

where 

𝑲𝒚 =  𝑮𝜶 (24) 

𝑲𝒔 =  𝑮𝜷 (25) 

𝑲𝒙 =  𝑮𝚪 (26) 

For MPC as receding horizon control where only the first 𝑞 

inputs (∆𝑼𝒌) are sent to the plant, we can write  

∆𝑼𝒌 = 𝑲𝒖∆𝑼 (27) 

Equations (23) and (24) indicate that 𝑲𝒚, 𝑲𝒔, 𝑲𝒙 and 

𝑲𝒖may be calculated as constant matrices at the 

beginning of MPC implementation and the problem 

reduces to estimating the vectors 𝒀, 𝑺 and �̂�𝒈at every 

sampling time. To obtain the constant vectors and 

matrices required to compute the optimum control 

input at every sampling time, we proceed as follows: 

 

a) Define the following constant vectors and matrices 

𝑽𝑷 as a column vector with 𝑃 ones, i.e. 𝑉𝑃 ∈ ℝ𝑃×1 

𝑰𝑷 as an identity matrix of 𝑃 rows and 𝑃 columns,. i.e. 

𝑰𝑷 ∈ ℝ𝑃×𝑃 

𝑰𝑴 as an identity matrix of 𝑚 rows and 𝑚 columns, i.e. 

𝑰𝑴 ∈ ℝ𝑀×𝑀 

𝑰𝒒 as an identity matrix of 𝑞 rows and 𝑞 columns, i.e. 𝑰𝒒 ∈

ℝ𝑞×𝑞 

𝑰𝒎𝑷 as an identity matrix of 𝑚𝑃 rows and 𝑚𝑃 columns, 

i.e. 𝐼𝑚𝑃 ∈ ℝ𝑚𝑃×𝑚𝑃 

𝟎𝒒,𝒛 as a matrix of zeros with 𝑞 rows and 𝑧 = (𝑀 − 1)𝑞 

columns, i.e. 0𝑞,𝑧 ∈ ℝ𝑞×(𝑀−1)𝑞  

 

b) Define the augmented state matrices as given in 

Equations (9) and the matrices 𝚽 and 𝜞of Equation (10) 

c) Define the weights on the output and input channels 

respectively as diagonal matrices as shown in Equations 

(2) and (3). Then output weight diagonal matrices 𝑾 ∈
ℝ𝑚𝑃×𝑚𝑃 is defined as the Kronecker product of identity 

matrix 𝐼𝑃 and the matrix 𝑊𝑚 of Equation (4) as: 

𝑾 = 𝑰𝑷⨂𝑊𝑚 (28) 

The input weight diagonal matrices 𝑹 ∈ ℝ𝑞𝑀×𝑞𝑀 is 

defined as: 

𝑹 = 𝑰𝑴⨂𝑅𝑞 (29) 

d) Let the filters 𝜏1, 𝜏2, . . . , 𝜏𝑚, on the output channels be the 

elements of a diagonal matrix 𝛼𝑖 (𝑖 = 1, 2, … , 𝑃) such 

that: 

𝛼𝑖 =

[
 
 
 
𝜏1

𝑖 0 ⋯ 0

0 𝜏2
𝑖 ⋮ 0

⋮ ⋮ ⋱ ⋮
0 ⋯ 0 𝜏𝑚

𝑖 ]
 
 
 

 (30) 
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Then constant matrices 𝜶 and 𝜷 of Equation (28) are 

defined as follows (see Equation 34): 

𝜶 = [

𝛼1 0 ⋯ 0
0 𝛼2 ⋮ 0
⋮ ⋮ ⋱ ⋮
0 ⋯ 0 𝛼𝑃

] (31) 

𝜷 = 𝑰𝒎𝑷 − 𝜶 (32) 

 

e) Then define the constant matrices 𝑮,𝑲𝒚, 𝑲𝒔 and𝑲𝒙as 

shown in Equation (23) 

At every sampling time 𝑘, let the column vectors for measure 

plant output 𝑦𝑘  and set-point 𝑆𝑘for all output channels be 

defined as: 

𝑌𝑘 = [𝑦1, 𝑦2, . . . , 𝑦𝑚]𝑇 (33) 

𝑆𝑘 = [𝑠1, 𝑠2, . . . , 𝑠𝑚]𝑇 (34) 

Then at every sampling instant 𝑘, the following are defined: 

 

f) The vector 𝒀 of current plant output measurements for the 

prediction horizon 𝑃 is defined is the Kronecker product 

of column the vector 𝑽𝑷 and the column vector 𝑌𝑘 as: 

𝒀 = 𝑽𝑷⨂𝑌𝑘 (35) 

g) The vector 𝑺 of set points for the prediction horizon 𝑃 

is defined is the Kronecker product of column vector 𝑽𝑷 

and the column vector 𝑆𝑘 as: 

𝑺 = 𝑉𝑃⨂𝑆𝑘 (36) 

 

h) Finally, define the matrix 𝑲𝒙 as 
𝑲𝒙 = [𝑰𝒒, 0𝑞,𝑧] (37) 

The block diagram for unconstrained state space MPC 

control incorporating state estimator and with all the constant 

matrices defined above is shown in Figure (1). 

In Figure 1, the two dotted blocks after 𝑆𝑘and 𝑌𝑘 

indicate that the mathematical Kronecker products 

𝑽𝑷⨂𝑆𝑘 and 𝑽𝑷⨂𝑌𝑘 must be obtained. 
 

5. APPLIED EXAMPLES 

We demonstrate the use of the simplified simulation plan 

with two examples. The first example is the transfer function 

of a SISO system representing the model of a helicopter in a 

particular flight condition given by [10]: 

𝐺(𝑠) =
𝑢(𝑠)

𝑦(𝑠)

=
9.8𝑠2 − 4.9𝑠 + 61.74

𝑠3 + 0.4199𝑠2 − 0.006028𝑠 + 0.09802
 

(38) 

where 𝑢 is the helicopter’s rotor angle, and 𝑦 is its forward 

speed. 

 

The second example is the linearized continuous state 

space model of a MIMO system representing the 

dynamics of a paper machine headbox also given by 

[10]: 

 

 

+ 
+ 
- 

1

1 − 𝑍1
 𝐾𝑠 𝑃𝑙𝑎𝑛𝑡 

𝐵𝑔 + + 
+ 

- 

𝑆𝑘  

𝐾𝑦 

𝑌𝑘  

𝐾𝑜𝑏  𝐴𝑔 

𝐾𝑥  

Unconstrained State Space MPC 

∆𝑈𝑘 𝑈𝑘  

State Estimator 

+ + 

𝑋𝑔(𝑘+1) 
𝑍1 𝐶𝑔 

𝑋𝑔(𝑘) 

Fig. 1: Block diagram of unconstrained MPC with state estimator 

𝐾𝑢 

𝑉𝑃⨂𝑌𝑘  

𝑉𝑃⨂𝑆𝑘  

𝑌 

𝑆 
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𝐴 = [

−1.93 0 0 0
0.394 −0.426 0 0

0 0 −0.63 0
0.82 −0.784 0.413 −0.426

] 

(39) 
𝐵 = [

1.274 1.274
0 0

1.34 −0.65
0 0

] 

𝐶 = [
0 1 0 0
0 0 1 0
0 0 0 1

] 𝐷 = [
0 0
0 0
0 0

] 

 

The two inputs are 𝑢1 (stock flowrate) and 𝑢2 (WW 

flowrate), while the three outputs are 𝑦1 (Headbox level) 𝑦2 

(Feed tank consistency) and 𝑦3 (Headbox consistency) 

The parameters of the state space MPC implemented on the 

systems are given in Table 1, while the values of the 

calculated constant matrices of Figure 1 are given in Tables 

(2) and (3) for the Helicopter model and Paper Machine 

model respectively. 

The parameters of the state space MPC implemented on the 

systems are given in Table 1, while the values of the 

calculated constant matrices of Figure 1 are given in Tables 

(2) and (3) for the Helicopter model and Paper Machine 

model respectively. 

The matrices of Tables 2 and 3 are calculated using Matlab 

while the State Space MPC simulation are implemented 

using Matlab Simulink (the entire simulation can also be 

carried out using only Matlab, without Simulink). While the 

MPC and the state estimator are in discrete states, the plants 

are implemented as continuous systems (as presented in 

Equations (37) and (38)), closer to real situation. The plots of 

the responses from the MPC simulations are shown in 

Figures 2 to 4. 

Since in the Paper Machine example, the system is non-

square, with more controlled variables than manipulated 

variable, the input weight of one of the outputs (𝑦2) was set 

to zero. This explains why only 𝑦2 does not track its set-

point. All other outputs track their set-points as shown in 

Figures 2 and 3. 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: MPC Parameters 

Parameter Helicopter Paper Machine  
Sampling Time 

(𝑇𝑠) 

0.6 1 

Prediction 

Horizon (𝑃) 

5 5 

Control 

Horizon (𝑀) 

2 2 

Input weights 

(𝑅𝑚) 

1 [0.6 0.6] 

Output 

weights (𝑊𝑚) 

1 [10 0 10] 

Output Filters 

(𝜏) 

0.9 [0.9 0.9 0.9] 

Covariance 

matrix (QQ) 

[1, 0, 0, 0 

0, 1, 0, 0 

0, 0, 1, 0 

0, 0, 0, 1] 

[1, 0, 0, 0, 0, 0, 0 

0, 1, 0, 0, 0, 0, 0 

0, 0, 1, 0, 0, 0, 0, 0 

0, 0, 0, 1, 0, 0, 0 

0, 0, 0, 0, 1, 0, 0 

0, 0, 0, 0, 0, 1, 0 

0, 0, 0, 0, 0, 0, 1] 

Covariance 

Matrix (RR) 

1 [0.1, 0, 0 

0, 0.1, 0 

0, 0, 0.1] 
 

Table 2: Constant Simulation matrices for MPC control of 
Helicopter 

 
Matrices Calculated Constant  

𝐴𝑔 [0.7751, -0.0131, -0.0520, 0 

0.5301, 0.9977, -0.0162, 0 

0.1658, 0.5997, 0.9967, 0 

15.2325, 32.0089, 61.1056, 1.0000] 

𝐵𝑔 [0.5301; 0.1658; 0.0338; 6.4720] 

𝐶𝑔 [0, 0, 0, 1] 

𝐾𝑥  [2.8179, 6.2009, 7.5510, 0.0574 

-1.2796, -6.6538, -11.1552, -0.0948] 

𝐾𝑦 [0.0098, 0.0135, 0.0186, 0.0129, -0.0090 

-0.0181, -0.0247, -0.0336, -0.0217, 

0.0207] 

𝐾𝑠 [0.0011, 0.0032, 0.0069, 0.0067, -0.0063 

-0.0020, -0.0058, -0.0125, -0.0114, 

0.0144] 

𝐾𝑢 [1, 0, 0] 

𝐾𝑜𝑏 [0.0043; 0.0172; 0.0169; 1.0000] 
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Table 3: Constant Simulation matrices for MPC control of Paper Machine Headbox 

 Calculated Constant Matrices 

𝐴𝑔 [0.1451, 0, 0, 0, 0, 0, 0 

0.1331, 0.6531, 0, 0, 0, 0, 0 

0         0    0.5326         0         0         0         0 

0.2122   -0.5120    0.2440    0.6531         0         0         0 

0.1331    0.6531         0         0    1.0000         0         0 

0         0    0.5326         0         0    1.0000         0 

0.2122   -0.5120    0.2440    0.6531         0         0    1.0000] 

𝐵𝑔 [0.5643    0.5643 

0.1239    0.1239 

0.9942   -0.4822 

0.4199    0.1283 

0.1239    0.1239 

0.9942   -0.4822 

0.4199    0.1283] 

𝐶𝑔 [0, 0, 0, 0, 1, 0, 0 

 0, 0, 0, 0, 0, 1, 0 

 0, 0, 0, 0, 0, 0, 1] 

𝐾𝑥  [0.2658   -1.9337    0.5959    1.3457   -0.3378         0    1.4922 

0.4513    3.3857   -0.3531   -0.5514    2.2152         0   -0.2534 

 -0.0688    0.9715   -0.0561   -0.6030    0.6205         0   -1.1193 

  0.1112    0.9417   -0.1867   -0.2541   -0.3237         0   -0.3140] 

𝐾𝑦 [0.1020, 0, 0.5341, 0.0512, 0, 0.5848, -0.0557, 0, 0.2692, -0.1201, 0, 0.0199, -0.1506, 0, -0.1316 

 0.4832, 0, 0.3119, 0.5455, 0, -0.1059, 0.3520, 0, -0.2817, 0.2085, 0, -0.1416, 0.1206, 0, 0.0785 

-0.0811, 0, -0.6163, -0.0128, 0, -0.6742, 0.1010, 0, -0.2492, 0.1672, 0, 0.1095, 0.1966, 0, 0.3382 

-0.5781, 0, -0.4745, -0.4679, 0, 0.1387, -0.0457, 0, 0.3659, 0.2245, 0, 0.0740, 0.3641, 0, -0.3382] 

𝐾𝑠 [0.0113, 0, 0.0593, 0.0120, 0, 0.1372, -0.0207, 0, 0.1001, -0.0630, 0, 0.0104, -0.1044, 0, -0.0913 

 0.0537, 0, 0.0347, 0.1279, 0, -0.0249, 0.1309, 0, -0.1047, 0.1093, 0, -0.0742, 0.0836, 0, 0.0545 

-0.0090, 0, -0.0685, -0.0030, 0, -0.1581, 0.0376, 0, -0.0926, 0.0876, 0, 0.0574, 0.1363, 0, 0.2345 

-0.0642, 0, -0.0527, -0.1097, 0, 0.0325, -0.0170, 0, 0.1360, 0.1177, 0, 0.0388, 0.2525, 0, -0.2345] 

𝐾𝑢 [1, 0, 0, 0 

 0, 1, 0, 0] 

𝐾𝑜𝑏  [0.0165, -0.0022, 0.0161 

 0.2982, 0.0204, -0.1346 

 0.0204, 0.2274, 0.0599 

-0.1421, 0.0629, 0.4794 

 0.9419, 0.0019, -0.0120 

 0.0019, 0.9359, 0.0053 

-0.0120, 0.0053, 0.9578] 
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Fig. 2: Output and input trends of the Helicopter control Fig. 3: Input trends of the Paper Machine control 

 

 

Fig. 4: Output trends of the Paper Machine control  

 

  



Zaria Journal of Electrical Engineering Technology, Department of Electrical Engineering, Ahmadu Bello University, Zaria – Nigeria. 
Vol. 9 No. 2, September 2020. ISSN: 0261 – 1570. 

115 
 

6. CONCLUSION 

The algorithms for a State Space MPC using augmented 

state models was presented and a simplified simulation plan 

for State Space MPC, incorporating state estimator, has 

been developed. The simulation plan is easy to implement. 

The MPC implementations, using models of a SISO system 

and a MIMO system indicate that the outputs track the set-

points very well. Their implementations present very 

transparent state space MPC alternative for use by 

researchers. 
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