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ABSTRACT 

Attributed to a rise in personal vehicle ownership and the ongoing expansion of cities, the 

highest growth of traffic congestion in recent years has been observed. Advances in the use 

of artificial intelligence have prompted the question of whether a smart traffic management 

system could be developed in order to improve the current state of congestion found in urban 

environments. Increases in traffic congestion in recent years has prompted the need for new 

and more advanced traffic control solutions. Advances in technology have allowed artificial 

intelligence (AI) to have an increasing number of applications. This paper investigates the 

use of AI called reinforcement learning in developing a new autonomous traffic control 

system based on a realistic traffic system model. This paper provides a critical review of the 

relevant surrounding literature. A summary of current technology available in traffic control 

was also investigated. Key simulation design decisions are then discussed such as the level 

of detail possible on modelling authentic driving behaviour, first required analysing the 

different ways in which the driver through the control of the vehicle reacts to their 

environment. Subsumption architecture was then identified as an appropriate method for 

defining these behaviours. A basic traffic scenario was simulated, and the results show that 

reinforcement learning can help in Traffic Management.   
 . 

1. INTRODUCTION 

Drivers across the world, we may have noticed that the 

amount of time they spend waiting in traffic is greater 

than it has ever been in recent times. Statistics from 

the United Kingdom (UK) has shown a 2.4% increase 

in traffic density [1]. Similarly, the National Bureau of 

Statistics (NBS) estimated Nigeria’s vehicle 

population to 11, 458,370 at of 2017.  The report 

showed that Lagos and FCT produced the highest 

number of national drivers’ licenses while Yobe and 

Kebbi States had the least. Lagos is one of the most 

congested cities in the world. 40 per cent of cars in 

Nigeria are registered in Lagos and fatal accident rate 

in Lagos is 28 per 100,000 people. This is three times 

greater than in most European cities. The relative 

increases in costs of other transport methods have also 

created a positive trend of car ownership, with many 

now opting for fuel efficient models with lower 

running costs. Specifically, urban roads witnessed an 

average increase of 2%, which has directly resulted in 

greater levels of congestion [1] [2]. The economic 

impact of congestion is looking to rise significantly in 

the future. In a collaborative study between INRIX and 

the Centre of Economics and Business Research [3] it 

has been estimated that the annual cost of congestion 

on the UK will rise 63% by 2030 to £21 Billion”. The 

incurred costs are attributed to factors such as cost of 

fuel, reduced productivity and rise in business fees for 

idle assets. 

The economy is not the only the factor to suffer as a 

result of congestion. Traffic has a strong associated 

link with CO2 emissions [4]. Even with fuel efficiency 

at the forefront of transportation design, its reduction 

is small compared to the impact of idle vehicles in 

congested areas. In addition, the individual impact on 

the population is one of frustration, whether 

commuting in a personal vehicle or using public 

transport. The accumulation of these issues is the 
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driving pressure on developing new traffic 

management systems to tackle the increases in the 

amount of congestion. The emergence of new 

technology in sensing, processing and communication 

has brought about the race to find the next stage of 

urban traffic control. A rise in artificial intelligence 

(AI) capabilities has triggered a buzz of investigation 

into how an autonomous system could be developed 

[5]. One growing field of AI is reinforcement learning 

methods, which has yet to be explored thoroughly for 

traffic control. 

With the success of reinforcement learning application 

to traditional game playing problems (such as 

Tesauro’s temporal difference algorithm to play 

backgammon [6]), many started investigating how it 

could be applied to practical robotics and control [7]. 

Scenarios such as the transportation of objects [8] and 

elevator dispatch [9] have deployed reinforcement 

learning to great effect, matching or surpassing the 

performance of controller schemes that were in current 

use. 

In the paper, we investigate the use of reinforcement 

learning methods to an urban traffic simulation. 

Furthermore, a survey of the relevant literature is 

given to provide significant background information.  

2. LITERATURE REVIEW 

1) Traffic Sensors: For the traffic light controller to 

employ its control scheme correctly it is beneficial for 

it to be able to sense the environment of the junction. 

There are two main detection methods currently used 

in traffic systems: underground inductive loops and 

over ground radio wave detectors [10]. An inductive 

loop senses vehicles by detecting a change in the 

magnetic field induced as they pass over. Using the 

most up to date technology, Siemens launched their 

SLD4 Inductive loop detector in June 2013 [11]. 

Rather than just detecting when a vehicle has passed, 

this detector also has length based classification in 

order to distinguish different vehicle types. Inductive 

loops are installed under the road surface and are used 

in multiple positions across a junction. They can be 

placed in the lead up to the junction in order to 

establish a count of how many vehicles are 

approaching and, in a multi lane road, will give an 

indication of their intended vehicle direction. 

Additionally they can be also placed in the middle of 

a junction to detect any vehicles that are waiting for a 

gap in the traffic stream to turn. 

In addition to inductive loops there are also over 

ground sensors that make use of radio wave 

technology to sense traffic. Siemens also produce a 

highly accurate over ground sensor using radar 

technology called Heimdall [12]. Pairing a planar 

radar antenna system with a digital signal processing 

engine, Heimdall offers an accurate way of vehicle 

detection and junction capacity measurement with the 

additional capability of detecting pedestrians. Older 

visual sensor technology used to be impeded by 

external conditions such as weather, however Siemens 

claim that their newer iterations using radar greatly 

reduce this effect. Usually installed on the traffic 

signal heads, over ground sensors are calibrated for the 

required field of view for that junction. 

The type of sensor employed depends on the 

requirements of the junction. Overground sensors are 

easier to install but can rendered ineffective if 

obstructed by the junction environment. Inductive 

loops, on the other hand, are impervious to 

environmental factors but maintenance is high as well 

as risk of damage caused by roadworks. The most 

robust systems will combine the two sensory methods 

to ensure full detection ability across the entire 

junction. 

2) Traffic System Communication: Regardless 

of the type of control scheme used by the junction’s 

traffic controller, the ability to communicate out in the 

field back to central control is very useful. It allows for 

rolling updates to the control scheme and the retrieval 

of traffic data without physically attending the site 

[13]. 

Some modern control schemes require real time data 

in order to function accurately. Therefore, 

communication links took the form of private 

optimised telephone circuits [14]. As communication 

technology has advanced into wireless capability, 

efforts have been made to incorporate this in addition 
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if not as a replacement to the fixed communication 

connections. Due to the packet based nature of 

wireless communication, there can be delays or entire 

data losses and as a result the control schemes have 

been adapted to deal with this. As part of a research 

program on bringing new communication technology 

to urban traffic control the UG405 protocol [14] was 

developed to solve this exact problem. UG405 

compliant outstations such as the Chameleon from 

Imtech [15] and Stratos from Siemens are examples 

where GSM, GPRS and 3G as well as copper and fibre 

can now be used [16]. 

3) Traffic Control Schemes: There are several 

systems deployed to control junctions with varying 

leveled of complexity and use of current technology. 

The paper by A. Hamilton et al. based upon the 

collaboration between the Transportation Research 

Group, University of Southhampton and Siemens [17] 

discusses the evolution of these systems and provides 

a comparison of their advantages and disadvantages. 

One control scheme, using a fixed time plan, works by 

manually planning signals in a region so that junctions 

are synchronised, creating ’green waves’ that should 

allow traffic to smoothly pass through the area. 

Multiple schemes can be installed in the controllers to 

tackle different scenarios such as time of day or a local 

event. The traffic network study tool (TRANSYT) 

developed by TRL [18] takes historical data of a real 

traffic system, produces its own traffic model which it 

will then use to optimise a set of traffic plans. This has 

since been extended to allow for on-line plan updates 

to the controllers in the field if the right 

communications are available. 

To better use available sensing capabilities, vehicle 

actuated control schemes have been developed. One 

example of this is Microprocessor Optimised Vehicle 

Actuation (MOVA) [19]. It works by reacting to the 

traffic environment at the junction and applies a non-

congested mode to minimise delay and a congested 

mode to maximise capacity depending on the 

situation. When a vehicle is detected it invokes a 

demand for a green signal transition. Additional 

vehicles approaching the junction will increase the 

length the signal stays green until another demand is 

received elsewhere. 

The most recently developed technology in the UK is 

a coordinated version of vehicle actuated control 

called the Split Cycle Offset Optimisation Technique 

(SCOOT) [20, 21]. Co-developed by Imtech, Siemens 

and TRL, SCOOT takes in continuous traffic data in a 

region and makes small changes to traffic plans. Its 

aim is to provide the ’green wave’ coordination of 

fixed term plans with the ability to react to traffic 

fluctuations by altering the split, cycle and offset 

times. In [17] a discussion of the advantages and 

disadvantages of each system is given. As the 

complexity of the control system increases so do the 

cost of implementation, the reliance on accurate 

detector implementation and the communication 

needs. However, the ability to react flexibly to the 

current traffic situation also increases so the benefits 

are immediately useful to areas where congestion is of 

concern. 

3. SIMULATION ENVIRONMENT 

Simulating a realistic traffic model before 

implementation is quite important. Figure 1 is a model 

that is proposed in this paper. There are many aspects 

to building up an effective model to simulate a traffic 

environment. The following sections document the 

research into these areas to help make decisions in 

designing an appropriate environment for the 

application of reinforcement learning. 

1) Microscopic vs Macroscopic: The level at which a 

traffic system is modelled determines the level of 

detail of many aspects of the environment, the inputs 

it requires and the information that can be retrieved 

from it. The two main types of model are macroscopic 

and microscopic simulation. Mott and Beller [22] 

model the integration of personal rapid transit vehicles 

at both a macroscopic and microscopic level in 

separate simulations. Macroscopic simulation is based 

on flows and volumes as vehicles travel through the 

environment. They model the stations as nodes and the 

paths between them as possible flow movements. 

Visual colour coordination is used to represent the 

flow capacity along the paths, which will change over 
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time as the simulated passengers move towards their 

destination. 

Figure 1. Modelling Urban Traffic Management 

There are many aspects to building up an effective 

model to simulate a traffic environment. The 

following sections document the research into these 

areas to help make decisions in designing an 

appropriate environment for the application of 

reinforcement learning. 

1) Microscopic vs Macroscopic: The level at which a 

traffic system is modelled determines the level of 

detail of many aspects of the environment, the inputs 

it requires and the information that can be retrieved 

from it. The two main types of model are macroscopic 

and microscopic simulation. Mott and Beller [22] 

model the integration of personal rapid transit vehicles 

at both a macroscopic and microscopic level in 

separate simulations. Macroscopic simulation is based 

on flows and volumes as vehicles travel through the 

environment. They model the stations as nodes and the 

paths between them as possible flow movements. 

Visual colour coordination is used to represent the 

flow capacity along the paths, which will change over 

time as the simulated passengers move towards their 

destination. 

Microscopic simulation, in comparison, models the 

passengers and vehicles as individual entities rather 

than as a flow of movement. The movement of each 

can be followed and details such as when a vehicle has 

reached its capacity can be seen. Greater detail such as 

the infrastructure of the of the travel routes, how the 

vehicles operate and the way the passengers interact 

with the environment is required in order for the 

microscopic simulation to be effective. 

In a comparison of the two model types Mott and 

Beller state macroscopic systems work well for large 

scale simulations where analysis of overall movement 

and capacity is important. Microscopic models on the 

other hand provide operation details where the affect 

of control methods can be analysed. 

The structure of the physical layout requires much 

more description in microscopic level models than the 

flow based macroscopic ones. A simple cellular layout 

model is described in a paper by Nagel and 

Schreckenberg [23]. In their implementation of a 

freeway traffic model they represent the road as a one 

dimensional array where each element is a cellular 

space that can be occupied by a vehicle. During every 

update the simulation works out how many cells 

forward each vehicle travels and if there should be a 

change in acceleration due to vehicles occupying 

nearby cells. Tang and Wan [24] took this a step 

further and implemented a 3D animated traffic system 

also using a cellular approach. 

2) Time vs Event Based Updates: There are two bases 

for progressing ’time’ in simulation, discrete time or 

discrete events. In their paper on psycho-physical 

vehicle-following models, Schulze and Fliess [25] 

describe the functionality of these two forms and a 

comparison of their effect on running the simulation. 
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The time based approach works by updating all 

elements of the environment at steady time intervals. 

Then if any vehicle is in a situation where it has to 

change state due to the new position it will update that 

in the model. This goes for all other model elements 

such as the controller, sensors and signals of traffic 

control systems. Using event based methods the model 

computes an event list using the current disposition of 

the simulation and the time until the next scheduled 

event will take place. When the next event is reached, 

the environment is updated, new events are scheduled 

and the ordering of events already scheduled is 

recomputed if they have been affected by the recent 

change. An example of how the event update would 

work in car following behaviour can be found in [25]. 

An event occurs for the leading car as it is approaching 

a junction to decelerate. The processing of this event 

consists of calculating the next event time for the that 

car, scheduling it into the event list, calculating the 

unexpected event for the following car to also slow 

down and finally replace the following car’s scheduled 

event with the new one. 

They continue by listing the dependencies of both 

methods on the run time of the simulation. 

Computation for the time based method increases with 

a higher frequency of environment updates. Whereas 

with the event oriented computation the dependency is 

with the number of possible event cases to calculate. 

There is an additional limitation with event based 

methods which is how efficient the event scheduling 

algorithms, prompting consideration of language and 

how the simulation is structured. 

It is obvious that for both methods the number of 

dynamic model objects within the system also 

contributes to the computation time. For this a conflict 

can be seen between ensuring the scale of the model is 

large enough to average out traffic flow behaviour 

across the simulation and minimising computation 

time. 

IV. Simulation Architecture: 

There are multiple elements that can make up a 

simulator programme. One way to structure the 

simulator is described in [26], based on the authors’ 

work on microscopic traffic simulations. A diagram 

showing the update flow of the main simulator 

elements can be seen in Figure 2. 

 
Fig. 2. Simulation and agent update loop [26] 

 
Fig. 2. Simulation and agent update loop [26] 

The simulation control triggers updates to the 

environment using a time based method. On each 

update the elements of the environment will change 

depending on their own rules. This system passes 

information from the environment to the agents which 

represent the controlled objects in the environment. 

Finally at every update the output of the simulator is 

saved. In this case a visual image is produced in real 

time. 

Available Traffic Simulation Software: There are 

many professional traffic simulation software 

packages, with most providing microscopic detail. 

PTV Vissim [27] is a commercial software product and 

was used in [22] for microscopic simulation. Its 

claimed features include easy to implement model 

geometries, active traffic management capabilities and 

system analysis including emissions modelling. One of 

the popular open source packages is SUMO 
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Simulation of Urban MObility [28]. It is another 

microscopic traffic simulator with a smaller feature 

set. It allows for multimodal traffic including 

pedestrians, auto generated traffic light time 

schedules. Neither SUMO nor PTV Vissim easily 

allow unconventional control system solutions to be 

applied to the real time simulations 

5. VEHICLE MODELLING 

Arguably the behaviour and control of the simulated 

vehicles themselves are the most important aspect 

when developing an urban traffic model. The ability to 

act as real drivers would improve the viability of any 

control systems that are tested in the simulation. Hence 

researching driving behaviour and effective ways of 

modelling it is important. Behaviour: The overall 

behaviour of a vehicle is the combination of the 

physical properties of the vehicle and the behaviour of 

the driver. Different aspects of driving behaviour can 

be categorised and modelled as a set of parameters 

used in simulation. One analysis of this breakdown is 

given in a paper on safety related driving behaviour by 

Bonsall et al [29]. The following parameters are some 

of the important behaviours described: 

1) Desired speed - most often is the speed limit 

of the road 

2) Desired headway gap - determined as enough 

time to match deceleration of the leading car 

3) Reaction time - used as a measure of how soon 

after an event is reacted to by the vehicle. 

4) Normal acceleration/deceleration - 

parameters to judge how vehicle speed will change 

under car following 

conditions 

5) Maximum acceleration/deceleration - 

parameters to define vehicle physical limits under 

scenarios such as emergency stop and overtaking 

6) Critical gap - defines how big a gap the 

vehicle desires, to make certain manoeuvres such as 

turn across a flow of traffic or overtaking 

Many of the parameters can be linked to 

’aggressiveness’. A more aggressive and impatient 

driver may occasionally over-speed, leave a smaller 

headway gap, employ harsher acceleration and require 

a smaller critical gap whilst making manoeuvres. A 

more cautious driver may frequently underspeed in 

busy areas or tight turns, and leave larger gaps in order 

to prepare to gently decelerate. 

 

6. ROUTE PLANNING: 

There are many established route planning algorithms 

that vary in complexity and efficiency [30]. One of the 

simplest and commonly used is Dijkstra’s shortest path 

algorithm and is used in the work of Raney and Nagel 

[31] for iterative route planning. In their algorithm the 

path or road weights between junction nodes are based 

on travel times not distances. The algorithm then 

iteratively works out the shortest path to an adjacent 

node from all nodes previously ’solved’ and the node 

is given a value totalling the weights to get to that 

node. This happens until the goal node is reached, and 

the shortest path is found by tracing the weights back 

to the start. 

In another paper [30], Sanders and Schultes 

investigates algorithms of greater complexity for route 

planning in a general context. They claimed using 

simple methods like a bidirectional search using 

Dijkstra’s algorithm can already speed up the search 

by applying it in both directions until the same node is 

reached. In a further paper [32] they go on to introduce 

their work on the Highway Hierarchies algorithm for 

very large road networks. It combines the idea of 

directing the search toward the goal and the idea of 

having a path hierarchy to filter lesser paths. 

A.  Agent Based Modelling: Traditional and 

established approaches to AI use a sensing, planning 

and action philosophy. In a paper on new approaches 

to robotics by Brooks [33], he starts by introducing 

these traditional methods and providing examples of 

them in practise such as one of the original 

implementations, ’Shakey the Robot’ [34]. He goes on 

to criticise these methods for their poor ability to 

perform in the real world outside of a simulation. One 

of the ’new’ approaches to robotics outlined in the rest 

of the paper is subsumption architecture. 

      

Introduced in an earlier paper by Brooks [35], 

subsumption architecture takes a reactive approach 

based on a set of agent behaviours. Figure 3 shows 

how the planning stage in traditional based methods is 

replaced by a hierarchy of behavioural priorities. The 

lowest levels are designed to represent the basic 

necessary functions of the agent and the higher levels 

become more abstract and goal driven. 
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 Fig. 3. Example decomposition of a robot using 

subsumption architecture 

Each level is made up of connected modules that 

together define a finite state machine. An example by 

Brooks is a lowest level used to avoid objects. The 

input to the level is a sonar sensor, which is feed to a 

detection module. When an object is detected a 

runaway module is activated which in turn used turn 

and forward modules to avoid collision. Higher levels 

have the ability to suppress and inhibit the output of 

lower levels in order to action their own functionality. 

In the example the ’wander’ level inhibits the turn and 

forward signals to act upon the desire to explore. A 

discussion of traditional methods verses reactive 

agents using subsumption architecture in a multi agent 

traffic simulation is given by Ehlert and Rothkrantz 

[26]. When building their simulation they rejected a 

full traditional approach, because the complexity of 

action planning for each agent in that environment 

would be infeasible to achieve in real time. Reactive 

agents however have a fast response time, but the lack 

of any planning ability does impact the accuracy of the 

model. They decided to implement a hybrid driving 

agent, which is mostly based on subsumtion 

architecture with an integrated short term planner and 

its structure can be seen in Figure 4. 

 

Fig. 4. Driving agent hybrid structure [26] 

B. Reinforcement Learning 

The entire purpose of the research so far has been to 

aid in creating the most accurate model possible so that 

the impact of reinforcement learning on traffic control 

can be reliably measured. The following sections 

outline the research on the learning algorithms 

themselves and the considerations when implementing 

them. 

1) Basic Philosophy: One of the core resources 

in the research of reinforcement learning is a book 

written by Sutton and Barto [36]. They introduce the 

concepts behind the learning algorithms, a coverage of 

the main algorithms currently being used and thoughts 

on the many factors that affect them. 

One key concept is the idea of states and actions. A 

system with learning applied it to must have the 

capacity to be modelled in discrete states, where each 

state represents one possible configuration status of the 

system elements. In each state a set of possible actions 

are available of which one can be selected to transition 

to a different state. Often the case is that it is uncertain 

exactly what the new state may be as a result of a 

particular action. The method by which the action is 

selected is known as a policy. 

Critical to the function of reinforcement learning are 

rewards and value functions. A reward is given for 

taking actions which either move towards the goal 

state or result in a ’better’ state than the system was 

previously in. Value functions are a measure of how 

good the current state or state action pair is in terms of 

achieving the overall system goal. It is usually 
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calculated by estimating the expected sum of rewards 

until the goal criteria is achieved. In this sense, rewards 

should be designed such that maximising the value 

function achieves goals. 

The learning aspect comes from updating the value 

functions to represent their ability to achieve goals as 

a result of interacting with the environment. Over time 

or after many iterations there should emerge optimal 

action choices for each state. To help this convergence 

the magnitude of these updates will decrease overtime 

until an ’optimal’ policy is found. 

2) Exploration verses Exploitation: In a paper 

which surveys the field of reinforcement learning [7], 

Kaelbling et al. discuss a well known conflict in most 

related algorithms, exploration versus exploitation. 

Exploitation is when a policy (known as a greedy 

policy) will only select the action which currently 

results in the highest value function. This may provide 

reasonable results but runs the risk of being a sub 

optimal solution to the problem. 

Exploration on the other hand promotes not always 

taking the highest policy so that other states can be 

tested. This can result in the discovery of new optimal 

policies from initially uncertain states. Exploration 

does directly effect the time to convergence of the 

optimal policy but usually results in an overall better 

solution. 

Balancing exploration and exploitation is one of the 

main factors to try and optimise and many techniques 

are used to apply sufficient exploration to achieve 

optimality within a reasonable time. A common 

technique is -greedy where it takes a random non 

highest value action with probability and the highest 

value action the rest of the time. Convergence can then 

be simulated by slowly reducing. In [7] other 

techniques are given such as Boltzmann exploration. 

3) Episodic and Continuous Tasks: Some tasks 

can easily be seen to be episodic in nature, examples 

of those are a game of chess or getting from point A to 

point B. In these cases there are clear initial and 

terminal states which in the case of the former example 

could be successful or unsuccessful. In comparison 

tasks such as the classic pole balancing problem could 

be considered continuous. 

In [36], its stated that the value function (or expected 

return) for a particular state in episodic task learning is 

the simple sum of the expected rewards until the 

terminal state. In continuous task learning however the 

sum is infinite because of a lack of terminal state. The 

solution given for this issue is discounting. 

Discounting tapers off the proportion of the reward 

value of future expected rewards at a rate of γk, where 

k is how far in the future the reward is and γ is the 

discount rate between 0 and 1. A γ value of zero only 

accounts for the immediate reward and as it increases 

further rewards have a greater impact. 

4) Markov Decision Process: As previously 

mentioned it is uncertain that given a state and an 

action, which new state will the system transition to. 

This could be because of environmental factor or 

otherwise. In [36] Markov decision processes (MDPs) 

define the probability of moving to a next state from a 

current state and action, and also the expected reward 

for a state transition due to a particular action. 

These MDPs are used in the Bellman optimality 

equation, which finds the optimum action-value 

function of taking action a in state s: 

𝑄∗(𝑠, 𝑎) =∑𝑃𝑠𝑠′
𝑎 [𝑅𝑠𝑠′

𝑎 + 𝛾𝑚𝑎𝑥⏟
𝑎

𝑄∗(𝑠′, 𝑎′)]

𝑆′

 

0 

Where P is the probability of next state s from current 

state s and action a, R is the reward from that transition, 

γ is the discount rate and Q∗(s0,a0) is the optimum value 

function for the next state. Whilst the Bellman 

optimality equation generates the exact optimal policy, 

its does so by exhaustively computing all future 

possibilities which even in small networks is 

unrealistic in implementation. Therefore effective 

algorithms use approximations to the equation, to 

achieve near similar results. 

 
Fig. 5. Cliff-walking task using on-policy and off-policy 

methods [36] 
5) On Policy and Off Policy Methods: Temporal 

difference methods define one of the main sets of 

reinforcement algorithms [36]. They work by updating 

the current state value with a fraction of difference 

between its value and the next state value. This allows 
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states which lead up to high value states to increase in 

value so that those high value states can be reached. 

When using an -greedy policy for action selection, if 

the algorithm uses the chosen next state to update the 

previous state value, it is known as an on-policy 

algorithm. However when the algorithm uses the max 

next state value to update regardless of whether it was 

chosen by the -greedy policy or not, it is know as an 

off-policy algorithm. 

A comparison example given in [36] can be seen in 

Figure 5 and highlights the differences between the 

two methods. The task was to navigate from the 

bottom left cell of a grid to the bottom right cell whilst 

avoiding moving into the ’cliff’ on the rest of the 

bottom row. The off-policy method (Q-learning) 

quickly found the shortest route just above the cliff but 

due to exploration, often walked into the cliff which 

suggests it might struggle if implemented ’on-line’. 

The on-policy method (SARSA) found a longer but 

’safer’ route due to evaluating the exploration 

decisions. It is claimed that both methods will 

converge to the optimal policy as  is reduced. 

An additional example of an on-policy algorithm is the 

actor-critic method, and one for off-policy is R-

learning. 

6) Function Approximation: If the possible 

number of states or actions required to model a system 

are very large or even continuous, calculating value 

functions becomes extremely difficult [37]. One 

method used to mitigate this problem is function 

approximation. It uses approximation vectors to apply 

more generalised value approximation updates across 

states with common feature sets. Generalisation 

methods such as gradient decent or linear coarse 

coding [38] have been used successfully and even 

neural networks have been implemented for use as 

function approximators. These methods can then be 

paired with both on-policy and off-policy methods to 

form a full learning algorithm. 

7) Planning Using Models: The probabilities of 

transitions and expected rewards for each state-action 

pair can be used to build a model of the current system 

[36]. Models can then be used to artificially simulate 

experience simultaneously with real experience from 

the environment. This can dramatically reduce the 

amount of time required to converge to an optimal 

policy. 

There are some considerations to be made when using 

model planning. First the accuracy of the model will 

impact the effectiveness of the optimal policy if it does 

not represent the environment well. Sufficient 

computation has to also be given to backing up the 

simulated samples appropriately. Having a model can 

provide unique benefits too such as encouraging the 

exploration of long untried states by artificially 

increasing its value function. Depending on the 

application of reinforcement learning, additional 

planning through modelling may provide a significant 

advantage. 

VII   Reinforcement Learning for Traffic 

Management 

 

 This paper analysing the use of reinforcement 

learning algorithm for controlling traffic at a single 

junction. A simulation of a single junction 

environment was run for 24 virtual hours, using the 

stochastic scheduler with a car rate of 1 every 5 

seconds. The SARSA learning algorithm was chosen 

with a learning rate, discount factor and exploration 

probability of 0.1, which is a common initial value for 

these parameters. Another simulation was run using 

the same settings but without the learning, which 

represents a standard set of results for comparison. 

Using the graph analysis tool developed, graphs were 

generated for both simulations in order to assess the 

effectiveness of the learning control system. 

 

 
Figure 5: Modelling flow Diagram 

 

 Figures 6 and 7 show the average speed of the 

vehicles in the simulation over the duration for the set 

plan simulation and the learning control simulation 

respectively. 
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Figure 6: Moving Average Speed Graph for Fixed Plan 

Control 

 
Figure 7: Moving Average Speed Graph for SARSA 

Control 
 

It can be seen that for the fixed plan simulation, after 

the initial settling time, the average vehicle speed has 

settles to around 4.4m/s. On the other hand, for the 

learning control simulation, the average vehicle speed 

is a fair bit lower and has also not settled, if fact it is in 

decline. This signifies that the current control scheme 

has not learnt an optimum control policy or reached 

convergence by the end of the simulation. This is 

further confirmed by looking at the total reward graph 

for the learning control simulation, shown in figure 8. 

 
Figure 8: Accumulative Reward Graph for SARSA Control 

 

As the traffic control agent learns, the expectation is 

that that total reward will exponentially increase over 

time. This should occur as the set of policies learnt by 

the agent converge towards an optimum policy, since 

the performance should increase as a result and should 

therefore gain a bigger reward each learning step. 

However, the reward graph for the learning control 

simulation shows an almost linearly increasing line, 

with a slight positive curve. 

What can be taken from this is that the control agents 

are still in the early stages of learning at the end of the 

simulation. In the virtual 24 hour period 5866 learning 

steps occurred which, considering the number of 

possible actions (1344) the learning agent could 

perform across the 576 possible states, is very low. 

Due to the factors of exploration probability and the 

chance the agent has of entering every learning state, 

this problem would require a significantly larger 

number of learning steps in order to exhaust all 

possibilities with seeing them a sufficient number of 

times and for convergence to occur. It is highly 

probable that improved performance over a traditional 

fixed plan control system may be possible without full 

convergence, but a reasonable coverage will still need 

to be met before a set of policies are considered 

reliable. A simple solution would be to just run the 

simulation for longer, however it is worth noting that 

the simulation with learning took approximately 17 

minutes to execute using a personal home computer 

and generated 256MBytes worth of data in the 

simulation logs. This paper has shown that whilst 

reinforcement learning can be applied appropriately to 
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solve the issue of urban traffic management in at least 

one way, it has highlighted the difficulty in assessing 

its effectiveness using a realistic traffic simulation 

model. The dynamics of the traffic model used in the 

simulation are much faster than the dynamics of the 

learning agents used to control it and therefore the 

amount of activity that has to be simulated between 

learning steps is large. The evidence presented here 

does signify that reinforcement learning could still 

provide a novel solution to traffic management in 

urban environments, however there is a large amount 

of research that still needs to be conducted in order to 

find the most optimal implementation. 

7. CONCLUSIONS 

In this paper a review of the literature has been given 

in the key areas encompassed in the given project. this 

paper has developed a method of assessing the 

efficiency of traffic control systems using a realistic 

traffic simulation. More specifically it has been used 

to assess the feasibility of using reinforcement 

learning techniques to develop an intelligent system 

which learns to optimise traffic flow through an urban 

environment. It found that whilst reinforcement 

learning can be successfully applied to the traffic 

control problem, the complexity of the problem may 

require a substantial amount of learning before finding 

an optimal solution. Due to the realistic dynamics of 

the simulation being fast compared to the slower 

learning dynamics of the traffic controller, running a 

simulation for the length required for a large number 

of learning steps was infeasible with the processing 

power and data storage available.  
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