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ABSTRACT 

This paper presents a decomposition approach to the hydro-thermal optimal power 

flow problem to address the mathematical difficulty due to large number of 

variables and constraints associated with the problem. The decomposition of the 

problem is achieved by dividing the optimization period under consideration into 

hourly time intervals.  The optimization problem for each time interval is first 

solved using the Newton-Raphson based solution technique. The results associated 

with each hydro plant for every hour are then used to adjust the water worth value 

for each plant. This procedure is repeated until the available water is optimally 

utilized. The proposed solution procedure is implemented using MATLAB version 

7.14 software. The performance of the proposed algorithm is tested on IEEE 5-

bus, 30-bus and 57-bus networks. The simulation results have shown the 

effectiveness of the proposed algorithm. The performance index of each hydro 

station has been measured using the average hydro plant energy. 
 . 

1.          INTRODUCTION  

Successful planning and operation of the power system 

are the key goals of the power system engineering. 

These goals involve meeting the demand of electricity 

of the consumers at every time instance, minimizing the 

environmental impact of operation of power system, 

ensuring safety of both personnel and equipment. 

However, these goals must be economically 

accomplished [1]. One way to economically 

accomplish these goals is through economic dispatch. 

Economic dispatch is defined as the process of 

scheduling individual generating units in the power 

system, so that the system load is supplied entirely, and 

most economically [2]. Economic scheduling of the 

power system that contains both hydro and thermal 

stations involves the optimization of one or more 

objective functions with due consideration for the usage 

of limited water available for hydro generation [3-5]. 

This is generally referred to as hydro-thermal optimal 

scheduling problem. This problem can be classified into 

two. The first, which does not consider the power flow 

equations and the second, which considers the power 

flow equations and it is generally referred to as the 

hydro-thermal optimal power flow (HTOPF) problem. 

The hydro-thermal optimal scheduling problem without 

the consideration of power flow equations has been 

solved in the past with various approaches. These 

approaches are either deterministic or heuristic [6]. 

Deterministic methods take into consideration the 

analytical properties of the problem to create a 

sequence of points that converge to a global optimal 

solution. A major drawback to this approach is 

excessive reliance on good initial variables and the 

involvement of derivatives. On the other hand, heuristic 

methods have been found to be more flexible and 

efficient than deterministic approaches, however, the 

quality of the obtained solution cannot be guaranteed 

[6, 7]. Among the deterministic techniques are the base 

load procedure [1], variational calculus [8], 

coordination equation [9], dynamic programming [10, 

11], Pontryagin maximum principle [12], peak shaving 

[9], Langrangian relaxation method [13, 14], Newton’s 

method [15], nonlinear optimization method [16] and 

mixed-integer programming methods [17]. The 

heuristic methods include the genetic algorithms [18], 

evaporation rate–based water cycle algorithm [19], 
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particle swarm optimization [20], evolutionary 

programming [21], clonal selection algorithm [22] and 

so on. 

The HTOPF problem has been solved in the past with 

the progressive optimality algorithm, Newton iteration 

method, interior point method, linear and non-linear 

programming, a hybrid of genetic algorithm and 

Lambda iteration technique and so on.  

Progressive optimality algorithm is one of the methods 

used to solve the HTOPF problem in the early 1980s. 

This approach performed well when applied to handle 

the optimal schedule of generation in power systems 

that consist of cascaded hydro plants with time delay, 

head variation and constraints imposed due to 

equipment ratings and operating conditions of the 

power systems [23]. 

The Newton formulation appears to be as fundamental 

and effective for solving the HTOPF problem as it is for 

optimal power flow (OPF) and power flow. One of the 

earliest applications of the Newton’s approach to 

optimization of power systems operation was on all-

thermal stations with non-separable objective function 

[24]. The results obtained were quite promising. Other 

works later extended the approach to the HTOPF [3-5, 

25, 26]. Some of these works used the fuel cost as the 

objective function [3, 25] and some other used the 

transmission loss as the objective function [26]. Some 

formulated the problem as a multi-objective function 

with fuel cost and transmission loss as the objective 

functions [4]. Most of these works applied their 

solution to various test systems using load curve with 

two to three discrete time intervals.  

The reasons for the choice of using Newton-Raphson 

method for solving non-linear power equations that 

describe the power systems are [3, 4, 6]; 

(a) The solution technique is efficient for large-scale 

power system analysis  

(b) The method has improved, reliable and favorable 

convergence characteristics over other methods,  

(c) The Newton method has surpassed other methods 

in the aspects of memory demand and computing 

speed. 

(d) The numbers of iteration required for solution is 

independent of the size of the problem. 

Its major drawback is that convergence characteristics 

are highly dependent on the value of the initial 

conditions.  

Interior point method involves finding improved search 

directions strictly in the interior of the feasible space 

[27]. This method has proven to be a promising 

alternative for the solution of power system 

optimization problems. This method has been adopted 

in some HTOPF works to solve the thermal sub-

problem while the hydro sub-problem is solved by the 

analytical method [28] or the network programming 

method [29, 30]. However, the thermal and hydro sub-

problems in HTOPF problem have also been handled 

simultaneously using interior point method [31]. 

Linear programming formulation involves the 

linearization of objective function as well as constraints 

with non-negative variables [32, 33]. On the other hand, 

nonlinear programming technique uses nonlinear 

objective function and constraints. Linear and nonlinear 

programming methods are capable of handling the 

thermal sub-problem of the HTOPF problem. Linear 

programming has been used to achieve a near optimal 

solution that can be used to start the non-linear 

programming technique [34]. 

In a bid to look for modern approach of solving the 

HTOPF problem, researchers are now adopting a 

combination of the deterministic and heuristic 

technique of solving optimization problem. In a recent 

work [35], the hydro sub-problem has been solved with 

the genetic algorithm approach while the thermal sub-

problem is solved with the lambda iteration technique. 

This approach was reported to have a near global 

optimum solution. 

Due to the maximization of available water energy 

during a specified time interval associated with the 

HTOPF problem, it has usually been solved by 

decomposing the problem into two stages [6, 36]. The 

hydro sub-problem is firstly solved to define the hydro 

energy generation pattern. Based on the decision of the 

first stage, the thermal sub-problem is solved. This 

approach may not yield optimal results since usually, 

the real power output of the hydro stations are fixed 

during the thermal generation dispatch. However, other 

methods solved both the hydro and thermal sub-
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problems simultaneously. These methods either utilize 

the Newton Raphson (N-R) [3, 4, 25] or the interior 

point [31]. The results presented in those works proved 

the success of the methods.  

The simultaneous consideration of both the hydro and 

thermal plants constraints in the N-R based HTOPF 

solution procedure requires a large size of linearized 

equations [30].The size of these equations increases 

with system network scale and (or) time interval. This 

is as a result of the coupled relationship introduced due 

to water energy constraints.  As a result of this, solving 

these equations directly may cause the solution 

procedure to be prone to failure as the size of the 

network increases or as the interval increases. Due to 

the aforementioned problem, this paper proposes an 

improved N-R based HTOPF solution technique. The 

proposed technique decomposes the optimization 

problem into hourly subproblems to facilitate the 

solution of the problem. The solution to the subproblem 

for each hour requires smaller size of equations that 

only depend on the network scale. These equations are 

solved with the consideration of all constraints except 

the water availability constraint. After solving for all 

the time intervals, the results associated with each 

hydro plant are used to adjust the water worth value for 

each plant. This procedure is repeated until the 

available water is optimally utilized. The proposed 

procedure has been applied to solve IEEE 5-bus, 30-bus 

and 57-bus networks. The results presented have 

verified the effectiveness of the approach to HTOPF 

problem.  

2.      PROBLEM DEFINITION 

Unlike the OPF which is a one-time solution problem, 

the additional difficulty introduced by the HTOPF into 

the OPF is the optimum usage of water over a specified 

period of time (i.e. one day, one week, one month, one 

year and so on) [3, 4]. The HTOPF problem can be 

formulated as follows; 

Minimize  


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=
T

t

j tPfF
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Where F is the total fuel cost of the thermal units for 

the optimization period; f (Pj(t)) is the total fuel cost of 

thermal units per hour;  t refers to the discrete time 

interval in hour; T is the optimization period under 

consideration; nt is the total number of thermal stations; 

aj, bj, cj are the fuel cost coefficients of thermal station 

j; and Pj(t) is the real power output of thermal generator 

j. 

Equation (1) is subject to these equality constraints: 

(a) power balance constraints: In the formulation, the 

total active and reactive power generations in the 

system is designed to meet up with the respective 

demands as indicated in (3). 
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Where Pdi(t) is the active power demands at bus i; Qdi(t) 

is the reactive power demands at bus i; Pgi(t) is the 

scheduled active power generations at bus i (it can 

either be from the thermal station (i.e. Pj(t)) or hydro 

station (i.e. Ph(t)));  Qgi(t) is the scheduled reactive 

power generations at bus i; ∆Pi(t) and ∆Qi(t)  are, 

respectively, the active and reactive power mismatches 

at bus i; Pi(t) and Qi(t)  are, respectively, the active and 

reactive power injections at bus i and are given as: 
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Where nb refers to the total number of buses in the 

system; Vi(t)  and Vk(t)   are, respectively, the voltage 

magnitudes at buses i and k; δi(t)  and δk(t)   are, 

respectively, the voltage phase angles at buses i and k; 

Yik is the magnitude of the admittance of the line 

connecting buses i and k together; and θik is the angle 

of the admittance of the line connecting buses i and k 

together. 

   

(b) available water energy constraints: the pre-specified 

volume of water must be optimally utilized during 

the optimization period as indicated in (5). 
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Where qh is the pre-specified amount of water needed 

for generation at hydro station h during the optimization 

period; q(Ph(t)) is the volume of water used per hour at 

hydro station h; αh, βh, γh are the discharge coefficients 

of hydro station h; Ph(t)  is the real output power of the 

hydro station h and nh is the total number of hydro 

stations. 

Equation (1) is also subject to these inequality 

constraints: 
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Where superscript max and min given in (7), 

respectively, stand for the maximum and minimum 

limits on the variables. 

3.   NEWTON-RAPHSON HYDRO-THERMAL 

OPTIMAL POWER FLOW SOLUTION 

The HTOPF problem can be reformulated by 

augmenting both the power balance constraints during 

time t and water availability constraints for the 

optimization interval with the objective function of 

Equation (1). This is done with the introduction of 

Lagrange multipliers to cater for the power balance 

constraints, water worth (or water conversion factor) to 

cater for the water availability (υh) constraints and a 

penalty function to cater for the inequality constraints  

[3, 25, 28, 37]. The resulting augmented Lagrangian 

function is given in (8).  
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Where z represents the state and the control variables of 

power systems (i.e. real power generation, voltage 

magnitudes and angles); λpi(t) and λqi(t), respectively, 

represent the Langrangian multipliers for active and 

reactive power equations; υh is the water worth for 

hydro unit h; E(h(z),µ) and Gqi(t) represent the penalty 

functions of the inequality constraint and are 

respectively given in (9) and (10) [37].   
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Where h̅ and h are the upper and lower limits on 

variables respectively; c is the weighing parameter; and 

µ is the inequality constraints multiplier; S is a large, 

positive penalty weighting factor. 

Minimizing (8) directly is difficult [28, 30] and its 

solution procedure is susceptible to failure as the 

network size and (or) time interval increases. On the 

other hand, this work decomposes (8) into hourly sub-

equations as given in (11). These equations are 

minimized for every hour and an iterative adjustment 

strategy is subsequently developed to cater for υ, in 

other to satisfy the condition given in (5). The 

procedure involved in the proposed approach is given 

in the following section.  

 

4.  PROPOSED DECOMPOSITION APPROACH   

The aim of this approach is to relax the water 

availability constraint in (8). Doing this requires having 

T Lagrangian sub-equations. For example, if the 

optimization period under consideration is 24-hour, the 

proposed approach requires 24 Lagrangian equations. 

Each equation is minimized separately and the results 

for all the equations are used to update the water worth 

value. This procedure continues until the water worth 

value tracks the available water.  
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4.1 The Decomposed Lagrangian Function 

The decomposed Lagrangian function for the proposed 

approach is given as: 
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Unlike (8) where the water energy constraint is 

included, the new function does not. The water energy 

constraint will however be considered after minimizing 

all the T Lagrangian sub-equations. The procedure for 

minimization is given below. It should be noted that the 

penalty functions of (9) and (10) are only necessary in 

(11) for limits enforcement. How inequality constraints 

are handled is discussed later. 

The Karush-Kuhn-Tucker (KKT) condition for 

optimality of (11) is given as: 
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The solution of (12) and (13) by Newton’s approach 

requires linearizing these equations to give: 
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is the Hessian matrix,
  

 T ttz LL   is the gradient vector, ∆z and ∆λ are, 

respectively, the increments or decrements on control 

and state variables and the Langrangian multipliers. 

Equation (14) is solved iteratively and for every 

iteration, the variables (z and λ) are updated using the 

equation given below: 

 −=
−=

oldnew
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A solution is reached if the gradient vectors of (12) and 

(13) are within a tolerance margin of 10-4.  

If any of the variables listed in (7) is outside the 

allowable limits, the inequality constraint is enforced as 

described in the next section.  

4.2 Handling of Inequality Constraints 

The inequality constraints that are being handled dictate 

the required approach. Two approaches are employed 

in this work to handle the inequality constraints. These 

approaches are summarized below; 

   1. The constraints associated with voltage magnitudes 

and the real power generations are usually made 

inactive in the initial solution process [24]. But when it 

is violated, they are handled by activating the penalty 

function of (9) [37, 38]. After the activation, the first 

and second partial derivatives corresponding to the 

affected inequality constraint are added to the elements 

of the gradient vector and the Hessian matrix 

respectively. The linearized Equation (14) is again 

solved and the variables updated using (15).  

    2. Since reactive power at a generator bus is a 

function of some systems variables, it becomes a 

functional inequality constraint, hence, handling such 

constraints requires the usage of a form of penalty 

function given in (10) [37,38].
 
If the reactive power at 

a generator bus is within limit, the first and second 

partial derivatives of (10) are, respectively, added to the 

elements associated to λqi(t) in the Hessian matrix and 

gradient vector of (14) to deactivate the reactive power 

flow equation at generator bus i. However, these partial 

derivatives are removed when reactive inequality 

constraint becomes activated. 
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It is important to know that multipliers µ and weighing 

factors c and S are updated according to the criteria 

given in [37]. 

4.3      Adjustment Strategy for Water worth 

Variable 

It can be observed that the solution to (14) does not 

cater for the water worth variable (υ). This is to reduce 

the size of the gradient vector and Hessian matrix to be 

handled, as smaller size of gradient vector and Hessian 

matrix guarantees better and reliable solution than the 

ones with larger size.  

In this work, the strategy adopted to adjust the water 

worth variable requires the element of the gradient 

vector that relates to the active power output of the 

hydro station (Ph(t)). At bus i with hydro station h and 

during time interval t, it is definite that the expression 

for this element is given as: 
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From (16), Ph(t) is derived as: 
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Substituting for Ph(t)  in (5) yields: 
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Expanding the left-hand side of (19) in Taylor’s series 

about an operating point υh
(m), and neglecting the 

higher-order terms results in: 
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Simplifying (21) gives: 
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Therefore, at iteration m + 1, the water worth value is 

adjusted using the equation below: 
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This adjustment is repeated after every solution to the 

Lagrangian function for all the time intervals until the 

available water is optimally utilized. 

4.4 Flow Chart for the Decomposition Approach 

The flow chart for the proposed HTOPF procedure is 

given in Fig. 1. Five main steps are identified in the 

flow chart: (1) variable initialization (2) iteration loop 

1 (3) iteration loop 2 (4) optimization interval loop 3 

and (5) iteration loop 4. The iteration loops are 

represented by the arrow head arc with loop number 

written inside it.  

The first step is proper variable initialization for a good 

rate of convergence. In this work, voltage magnitude at 

all buses is initialized at 1.0 per unit. The voltage angles 

at all buses are initialized at 0o. These values are similar 

to that of the power flow solution procedure. The 

Lagrange multipliers for reactive power flow mismatch 

equation is initialized at zero. To initialize the bus 

Lagrange multiplier relating to active power flow 

mismatch equation, water worth value and active power 

output of both the hydro and thermal resources for 

every time interval, a simple hydro-thermal dispatch is 

adopted [37]. It is important to note that, this dispatch 

assumes that the loads and generation are connected to 

a bus without the consideration of system 

configuration, line impedances, losses and limits [39]. 

Iteration loop 1 solves the linearized Equation (14) and 

updates the HTOPF variables except the water worth 

value. This loop also makes sure that the gradient vector 

mismatch is less than the tolerable limit of 10-4. 

Iteration loop 2 ensures that all the HTOPF variables 

from loop 1 are within bound. If iteration loop 2 is 

activated due to variable limits violation, the elements 

of the gradient vector and Hessian matrix relating to the 

violated limit are, respectively, adjusted. Since gradient 
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vector and Hessian matrix are adjusted, iteration loop 1 

is definitely needed to ensure that the adjusted gradient 

vector mismatch is again less than the tolerable limit of 

10-4. This continues until variables are within bound. 

After the enforcement of limit on all variables that are 

outside bound, optimization interval loop 3 is needed to 

allow for solving the next optimization interval t. At a 

given interval t=T, iteration loop 4 is entered to check 

if water availability mismatch is less than the tolerable 

limit of 10-4 and if it is not, an update of the water worth 

value is required. This procedure continues until water 

energy constraint is satisfied.  

 

Variable initialisation, 

parameters settings and set t=1

Start

A: Form the gradient vector 

and Hessian matrix of  (11) 

with the appropriate addition 

of first and second 

derivatives of  (10)

Solve (14)

Update z, λ

Add the first and 

second derivatives of 

(9) to (14) and/or 

remove the first and 

second derivatives of  

(10) from (14)

Update 

multipliers µ 

and weighing 

factors c and S

Are variables within limits?

is t=T?

No

Yes

No
A

Yes

Yes

No
t=t+1

NoUpdate 

water 

value (υh)

Yes

Problem solved

Stop

1

2

3

4

 

 Fig. 1. Flow chart for the decomposed Newton-Based hydro-thermal optimal power flow solution technique 

This flow chart has been implemented in MATLAB software environment. 
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5.     RESULTS AND DISCUSSION 

The proposed algorithm has been implemented using 

MATLAB version 7.14 software. The results of the 

validation and evaluation of the algorithm is presented 

in this section. The validation has been done using the 

developed program to solve some similar HTOPF 

problems presented in the existing work [3]. In order to 

evaluate the developed software, the developed 

program has been used to further solve the HTOPF 

problem of some power systems; the IEEE 5-bus, 30-

bus and the 57-bus networks. A Twenty-four hour load 

duration interval is considered for this work. The load 

curve used for this study is shown in Fig. 2 [30]. The 

iteration referred to in this section is the iteration loop 

4 discussed in Section 4.4. 

 

5.1    Assessment of the Decomposition Approach 

To validate the performance of the developed program, 

it has been used to solve the HTOPF problem of 5-bus 

and 30-bus systems using the load curves (i.e. three 

time intervals for 5-bus and two time intervals for other 

systems) presented in [3].  The hydro and thermal 

generators’ characteristics presented in [3] have also 

been used for this assessment.  

The results obtained are compared with the results 

presented in [3]. The results for 5-bus and 30-bus 

systems are, respectively, shown in Tables 1 and 2. 

From the tables, it is observed that the results compared 

well with those of existing Newton-based technique 

with slight differences presented. For instance, the cost 

of fuel obtained for the proposed approach is slightly 

less than the one presented in [3] for 5-bus. While the 

cost of generation obtained for the proposed approach 

is insignificantly higher when compared to the one 

presented in [3] for the 30-bus system. However, the 

proposed HTOPF solution procedure has the ability to 

accommodate more intervals with varying system’s 

constraints and loading conditions which is a common 

feature of the deregulated power market. 

5.2    Description of Test Systems 

The data for 5-bus, 30-bus and 57-bus are sourced from 

past works [3, 37, 39, 40]. The characteristics of these 

systems are summarized in Table 3. Where ntl is the 

number of transmission lines, nld is the number of load 

buses, nt and nh are as earlier defined. The cost and 

discharge characteristics of the thermal and hydro 

generators of the test systems are contained in [41]. 

5.3     HTOPF Results  

The optimal schedules of the hydro and thermal 

generators are presented in this section. The parameters 

that describe the optimal schedules are; the total energy 

generated, the total system transmission loss, the total 

cost of fuel for thermal plant generation, the total cost 

of water for the hydro plant, maximum and minimum 

voltage magnitude of the system, water worth and 

average energy of the hydro plants. The total cost of 

water (i.e. savings in fuel cost) is derived 

 

 
Fig. 2. Load curve for the test systems [30] 
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Table 1. Comparison of results for 5-bus 

interval 1 2 3 Total 

 

thermal 

genration 

at bus 1 

(MW) 

existing 

approach 

[3] 

48.52 72.28 64.34 185.1 

proposed 

approach 

47.63 72.89 64.43 184.9 

 

hydro 

generatio

n at bus 

2  (MW) 

existing 

approach 

[3] 

68.56 95.99 86.79 251.3 

proposed 

approach 

69.38 95.34 86.65 251.4 

 

Cost ($) 

existing 

approach 

[3] 

588.38 870.24 774.66 2233.3 

proposed 

approach 

578.08 877.65 775.75 2231.5 

 
Table 2. Comparison of results for 30-bus 

interval 1 2 Total 

 

thermal 

generation 

at bus 1 

(MW) 

existing   

approach 

[3] 

50.88 97.58 148.5 

proposed 

approach 

48.47 93.83 142.3 

 

thermal 

generation 

at bus 13  

(MW) 

existing   

approach 

[3] 

52.52 101.9 154.4 

proposed 

approach 

54.11 106.4 160.5 

 

hydro 

generation 

at bus 2  

(MW) 

existing   

approach 

[3] 

41.05 93.63 134.7 

proposed 

approach 

41.47 93.24 134.7 

 

 

Cost ($) 

existing   

approach 

[3] 

1271.96 2466.11 3738.07 

proposed 

approach 

1262.46 2476.55 3739.01 

 

Table 3. Characteristics of the test systems 

no of 

buses 

ntl nt thermal               

generator(s) 

location 

nh hydro 

generator(s) 

location 

5 7 1 bus 1 1 bus 2 

30 41 4 buses 1, 2, 8, 11 2 buses 5, 13 

57 80 5 buses 1, 2, 3, 6, 9 2 Buses 8, 12 

 

from the last term of Equation (8). The average hydro 

plant energy (AHPE) for hydro plant h is calculated 

using (24). It should be noted that the active power by 

thermal generator at bus J and hydro generator at bus K 

are, respectively, represented as PgtJ and PhtK. For 

example, thermal generator at bus 1 is represented as 

Pgt1 and hydro generator at bus 2 is represented as 

Pht2. 

h

T

t

ht

q

P
== 1AHPE                                                         (24) 

5.3.1    Results for 5-bus System 

The HTOPF solution has been obtained in fifteen 

iterations with an absolute maximum water availability 

mismatch of 6.5×10-06. The maximum and minimum 

voltage magnitudes during the optimization intervals 

are, respectively, 1.0413 pu and 0.9724 pu. The optimal 

water worth value and AHPE are 83.69 $/Mm3 and 

3.9546 MWH/Mm3, respectively. The total cost of 

water for the hydro plant is $58,618.79. The total 

energy generated is 5,833.76 MWH and 47.48% of this 

energy is from the hydro station. The contribution of 

hydro generator depends on the discharge 

characteristics and water availability of the hydro plant. 

The total fuel cost for generation is $68,678.30 while 

the total transmission loss is 185.61 MWH and this 

value amounts to 3.18% of the total energy generation.  

The optimal schedules of the two generators are shown 

in Fig. 3. It can be seen that Pgt1 is constant at 90 MW 

at hours 1 to 4 and 22 to 24. This is because of the 

minimum mega-watt limit of the unit. It can also be 

seen that thermal unit at bus 1 generate more power 

almost throughout the optimization period. 

5.3.2     Results for 30-bus System 

The HTOPF solution of this system has been achieved 

with absolute maximum water mismatch of 8.18 × 10-

06 after eighteen iterations. The maximum and 

minimum voltage magnitudes are, respectively, 1.0994 

pu and 0.9007 pu. The water worth values for hydro 

stations at buses 5 (HS5) and 13 (HS13) are 28.93 

$/Mm3 and 10.91 $/Mm3, respectively. The higher 

water worth value of HS5 shows that, it better reduces 

the total cost of generation when compared to HS13. 

The total energy generation amounts to 9,824.4 MWH. 

The contribution of the hydro station to the total 

generation is 47.97 % with a total cost of water of 
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$12,019.86. The AHPE for HS5 and HS13 are, 

respectively, 11.6813MWH/Mm3 and 4.009 

MWH/Mm3. The average water energy indicates that 

HS5 better utilizes its water than HS13. The total fuel 

cost for the entire period is $11,700.98 while the total 

transmission loss is 123.32 MWH and this is 1.26% of 

the total energy generation. The active schedules of the 

generation stations in the system are shown in Fig. 4. 

This schedule has shown that the hydro unit at bus 5 

generates more power throughout while the thermal 

unit at bus 11 generates the lowest amount of power. 

5.3.3   Results for 57-bus System 

The HTOPF solution converges in nine iterations to a 

water worth value of 394.96 $/Mm3 and 188.67 $/Mm3 

for HG8 and HG12 respectively. The contribution of 

the hydro stations to the total generation is 31.40 % 

while the AHPE from HG8 and HG12 are respectively 

10.8826 MWH/Mm3 and 4.0164 MWH/Mm3.  The 

AHPE for both hydro generators show that HG8 

maximises water better than HG12. The maximum and 

minimum voltage magnitudes are, respectively, 1.099 

and 0.9003 per unit. The absolute maximum water 

availability mismatch is 5.90 ×10-6. The total cost of 

generation for the entire optimization interval is 

$617,588.75. The optimal schedules of both thermal 

and hydro generators are shown in Fig. 5. It is clear 

from this figure that the 250 MW limit on Pgt6 has 

caused the almost constant power outputs at hours 7 and 

8. It is also obvious that the hydro unit at bus 8 

generates more power during the period under 

consideration.  

 
Fig. 3. HTOPF active schedule of generators for 5-bus system 

 

Fig. 4. HTOPF active schedule of generators for 30-bus system 
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Fig. 5. HTOPF active schedules of generators for 57-bus system 

6.    CONCLUSION 

A decomposition approach to the Newton-based 

method of solving the HTOPF problem is carried out in 

this work. The proposed approach caters for the gap 

created due to increased system size and (or) time 

interval. The approach is achieved by first handling 

each interval separately for the period considered and 

updating the water worth value until the water 

availability constraint is satisfied. The HTOPF is 

formulated as an optimization problem with cost of 

generating active power as the objective function and 

power balance equations as the equality constraints. 

Some system’s inequality constraints are also 

considered. MATLAB software program has been 

developed to implement the solution procedure. The 

developed software has been tested on standard power 

systems to evaluate its performance and the results 

obtained are reported. Since the HTOPF problem has 

been decomposed into hourly subproblem, the 

computational efficiency is guaranteed.  

 The comparisons of the results of the existing and the 

proposed HTOPF Newton’s solution procedures show 

that both approaches are comparable for the time 

intervals considered (i.e. three intervals for 5-bus 

system and two intervals for 14-bus and 30-bus 

systems). However, the proposed algorithm is capable 

of handling more intervals with varying loading 

conditions. As a result of this property, the proposed 

methodology is suitable for Independent System 

Operator. 
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