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ABSTRACT 

This paper is geared towards controlling the Ball on Sphere (BOS) system by adopting the 

model developed in similar research for the ball on ball system and modified for control of 

the ball on sphere system however implemented using Linear Quadratic Gaussian (LQG) 

Control scheme. The linearized model for controlling a BOS system was adopted and 

configured. These configurations were then used to compute the state and input matrices 

taking consideration of the covariance Gaussian white noise elements and other 

parameters like the Kalman filter to create the Linear Quadratic Gaussian (LQG) 

controller. The result was simulated with MATLAB 2019b application which indicates that 

the BOS system is controllable, observable and stable. The paper assumes that the ball is 

always in direct contact with the sphere and that there is no translational motion between 

the ball and the sphere.   
 . 

1. INTRODUCTION 

The LQG is basically a loop within a loop control 

system that uses the double feedback loop structure. 

Linear Quadratic Gaussian Control of the ball on plate 

[1], all geared to stabilizing a ball on top of another 

element. Such control problem reveals the overarching 

importance of balancing systems in modern control. 

The concept of balancing systems therefore continues 

to elicit ever increasing research in virtually all aspects 

of control systems, due in part to their varied 

applications in astronomy, navigation, tracking, etc.  

 

The successful modelling of the single Ball on Sphere 

system provides the platform for attempting more 

challenging cases of multiple balls on sphere systems. 

 

In another sense, the BOS is a rather complicated 

system compared with any of the Ball on Beam 

(BOB), Ball on Wheel (BOW), and Ball on Plate 

(BOP) systems. Though similar to the Ball on Ball 

system which is a special case of the BOS wherein the 

physical characteristics of the both balls are the same. 

This poses challenge not only in terms of 

controllability and stability as much as they are non-

linear systems [2],[3], but also in system performance 

by virtue of chosen controller mechanism. 

Notwithstanding the popularity garnered by 

Proportional Integral Derivative (PID) based 

controllers, their associated inherent drawbacks [3] 

necessitated the choice of LQG for this paper. 

 

The BOS in this paper is analysed with a twin feedback 

rings structure for orientation, motion, and control. 

The outer feedback loop is developed using linear 

quadratic gaussian controller, while the inner loop 

accomplished with requisite linear quadratic regulator 

equations.  

 

The next section of this paper highlights the adopted 

mathematical models of the BOS, while the 

succeeding sections reviews the design of the 

controllers and the simulated results of system with 

conclusion in unit 6. 

 

2. LITERATURE REVIEW 

Works on control of similar non-linear systems [2] had 

been done in the past for instance in Fuzzy logic 

control of a ball on sphere system by [4] wherein the 

authors contends that fuzzy Logic control framework 

can mimic rational analysis and “linguistic control 

ability” in order to “equip the control system with 

certain degree of artificial intelligence. They 

highlighted the use of Adaptive Neural Network for 

controlling a Multi-Input, Multi-Output (MIMO) non-

linear system like the BOS system when subjected to 

random disturbances. They showed the inherent 
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accuracy and imperative of applying such controller 

mechanism. Hence, applied adaptive algorithm to 

develop the controller and a type of open loop neural 

network technique called radial basis network 

generated from the radial basis activation function. 

Though the method creates quite definite result, the 

complexity involved in applying gaussian radial basis 

function could be quite involving unlike the LQG that 

is simpler to implement. 

 

In another instance, [1], while using the LQG 

technique to stabilize the BOP found that the method 

exhibited good performance characteristics. The 

author used of the H-infinity sensitivity method to 

design the outer feedback loop. According to [5], the 

H-infinity controller can easily meet the requisite high 

level step response performance by merely selecting 

the weighting functions as appropriate, however it is 

somewhat constrained by sub-optimal input stability 

margins. And, given that the BOP have 4 DOF, this 

paper ventures to validate the possibility of applying 

the LQG on more complex systems with higher order 

DOF like the BOS system. 
 

Whereas [6] developed a model for the Ball on Ball 

System on the basis that the non-holonomic 

constraints posed by rotating a spherical object on top 

of another identical spherical one controlled by three 

(3) wheels so that the system can rotate in any 

direction (x,y,z) coordinates. However, his work 

focused excellently on deriving a baseline model that 

can be adopted to control any ball on ball system. 

Little attention was given to the analyzing the 

controller system responses.  

 

In trying to restate the attractiveness of non-linear 

control theory [2], applied adaptive feedback 

linearization method to regulate the BOS system. The 

authors concluded that such linearization mechanism 

can offer asymptotically accurate compensation for 

randomness inherent in the system characteristics. 

Notwithstanding the differences in controller design, 

another area of divergence between their work and this 

one lies in the focus of their study on the system output 

characteristics whereas this paper concentrated 

analysis on the individual step responses of system 

variables. In their work, [7] investigated the effect of 

unwanted noise elements in their random states in the 

control of non-linear systems and opined that it is 

better to use the kalman filter to estimate the state 

variables than the feedback linearization method due 

to the later susceptibility to noise. Again, their analysis 

was restricted to the output variables. 
 

While studying the impact of friction on the BOS 

system, [8] applied the bond graph modelling 

methodology and analyzed the system angular 

displacement dynamic responses with superlative 

results. However, their investigation was narrowed to 

only angular positions in the x-axis without observing 

same parameter in the y- or z-axes; and overlooked the 

other parameters like system angular velocities in all 

the axes including the x –axis, which was the focus of 

their analysis 

 

Though [2] in their model did not consider completely 

the mass of the sphere but its straightforward nature 

makes it quite easy to understand and redevelop for 

more challenging models. The model by [2] was 

therefore used in this paper but with parametric 

variations of the physical characteristics of the ball and 

underlying sphere. More areas of research exist 

especially in analyzing the BOS system responses in 

the frequency domain. 

 

3. SIMULATION ENVIRONMENT 

Model of the Ball on Sphere System in 3D 

 
Figure 1: Simple Model of the Ball on Sphere 

System (BOS) [2],[8] 
 

Figures 1 shows simple 3D model of the BOS system 

whereas Figure 2 indicates the schematic model of the 

BOS system in the cartesian coordinate system. 
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Figure 2: Model of the BOS in the Cartesian 

Coordinate System[1], [4] 

 

The model uses the second order Lagrange equations 

wherein the power train produces the necessary 

torques on the sphere through omni-wheels, whereas 

the task of the controller is to balance the ball on the 

sphere in the event of rotary or semi-rotary motion of 

the sphere caused by inputs from the actuating element 

(drive train) [1]. 

 

The ball with the radius (r) is treated as a homogenous 

rigid body with the mass m, the same as the sphere 

with corresponding mass M. Their respective moment 

of inertia I and J are modelled as a diagonal matrix 

 

Analysis of the Spatial rotation of the ball is 

accomplished by means of the Euler angles with 

respect to the z − x − z convention for the rotation of a 

reference body so that the angular velocity vector of 

the reference frame in accordance with [1] the 

Lagrange equations for a system with n generalized 

coordinates and nonholonomic constraints [9], [10], 

[11] have the form: 

 
𝜕
𝜕𝑡

(
𝜕𝐿
𝜕�̇�

) − 
𝜕𝐿
𝜕𝑞

= 𝑄𝑖, 𝑖 = 1,2,3,4 

With the Langrangian L = T-V (Where T and V are the 

Kinetic and Potential energies of the system). Where 

q is the generalized coordinate and i is an integer. 

𝑄1 = 0                                                              (3) 

𝑄2 = 𝑇𝑥                                                            (4) 

𝑄3 = 0                                                              (5) 

𝑄4 = 𝑇𝑦                                                            (6) 

((𝑅 + 𝑟)𝑚 + 𝐼𝑏
𝑅+𝑟

𝑟2 ) �̈�𝑥 + (−𝐼𝑏
𝑅

𝑟2) �̈�𝑥 −

𝑚𝑔 sin(𝜃𝑥) = 0  (7) 

 

(−𝐼𝑏
𝑅(𝑅+𝑟)

𝑟2 ) �̈�𝑥 + (𝐼𝐵 + 𝐼𝑏
𝑅2

𝑟2) �̈�𝑥 = 𝑇𝑥                       

(8) 

 

((𝑅 + 𝑟)𝑚 + 𝐼𝑏
𝑅+𝑟

𝑟2
) �̈�𝑦 + (−𝐼𝑏

𝑅

𝑟2
) �̈�𝑦 − 𝑚𝑔 sin(𝜃𝑦) = 0   (9) 

(−𝐼𝑏
𝑅(𝑅+𝑟)

𝑟2 ) �̈�𝑦 + (𝐼𝐵 + 𝐼𝑏
𝑅2

𝑟2) �̈�𝑦 = 𝑇𝑦               (10) 

𝑞 =  [𝜃𝑥 𝛽𝑥 𝜃𝑦   𝛽𝑦]                                             

(11) 

𝑀�̈� + 𝐺 = 𝑇                                                                

(12) 

𝑀 = [

𝑀11 𝑀12 𝑀13 𝑀14

𝑀21 𝑀22 𝑀23 𝑀24

𝑀31 𝑀32 𝑀33 𝑀34

𝑀41 𝑀42 𝑀43 𝑀44

]                         (13) 

 

𝑀11 = (𝑅 +  𝑟)𝑚 + 𝐼𝑏
𝑅 + 𝑟 

𝑟2
 

𝑀12 = −𝐼𝑏
𝑅

𝑟2
 

𝑀13 = 0 

𝑀14 = 0 

𝑀21 = −𝐼𝑏
𝑅(𝑅 + 𝑟) 

𝑟2
 

𝑀22 = 𝐼𝐵 + 𝐼𝑏
𝑅2

𝑟2
 

𝑀23 = 0 

𝑀24 = 0 

𝑀31 = 0 

𝑀32 = 0 

TX 

β 

R, IB 

θ 
m, r, Ib 
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𝑀33 = (𝑅 +  𝑟)𝑚 + 𝐼𝑏
𝑅 + 𝑟 

𝑟2
 

𝑀34 = −𝐼𝑏
𝑅 

𝑟2
 

𝑀41 = 0 

𝑀42 = 0 

𝑀43 = −𝐼𝑏
𝑅(𝑅 + 𝑟) 

𝑟2
 

 

𝑀44 = 𝐼𝐵 + 𝐼𝑏
𝑅2 

𝑟2
 

 

𝐺 = [

−𝑚𝑔 sin(𝑞1)
0

−𝑚𝑔 sin(𝑞3)
0

]                                                (14) 

 

𝑇 = [

0
𝑇𝑥

0
𝑇𝑦

]                                                                         (15) 

So 

  

�̈� = 𝑀−1(𝑇 − 𝐺)                                                         (16) 

 

State space variables:  

 

𝑥1 = 𝜃𝑥                                                                            (17) 

𝑥2 = �̇�𝑥                                                                            (18) 

𝑥3 = 𝛽𝑥                                                                            (19) 

𝑥4 = �̇�𝑥                                                                            (20) 

𝑥5 = 𝜃𝑦                                                                            (21) 

𝑥6 = �̇�𝑦                                                                             (22) 

𝑥7 = 𝛽𝑦                                                                            (23) 

𝑥8 = �̇�𝑦                                                                             (24) 

 

�̇�1 = 𝑥2                                                                            (25) 

�̇�2 = �̈�1                                                                            (26) 

�̇�3 = 𝑥4                                                                            (27) 

�̇�4 = �̈�2                                                                            (28) 

�̇�5 = 𝑥6                                                                            (29) 

�̇�6 = �̈�3                                                                            (30) 

�̇�7 = 𝑥8                                                                            (31) 

�̇�8 = �̈�4                                                                            (32) 

 

𝑎01 = (𝑅 + 𝑟)𝑚                                                          (33) 

𝑎02 = 𝐼𝑏 (
𝑅

𝑟2)                                                                  (34) 

𝑎03 = 𝐼𝑏 (
𝑅2

𝑟2)                                                                  (35) 

𝑎04 = 𝐼𝐵                                                                          (36) 

𝑎05 =
𝐼𝑏
𝑟
                                                                            (37) 

𝑎06 = 𝐼𝑏
𝑅

𝑟
                                                                        (38) 

𝑎07 = 𝑚                                                                           (39) 

 

𝜌 =

[
 
 
 
 
 
 
𝑎01

𝑎02

𝑎03

𝑎04

𝑎05

𝑎06

𝑎07]
 
 
 
 
 
 

                                                                        (40) 

 

As a result; 



Zaria Journal of Electrical Engineering Technology, Department of Electrical Engineering, Ahmadu Bello University, Zaria – Nigeria. 
Vol. 9 No. 1, March 2020. ISSN: 0261 – 1570. 

33 
 

 

𝑀 = [

𝑎01 + 𝑎02 + 𝑎05 −𝑎02 0 0
−𝑎03 − 𝑎06 𝑎04 + 𝑎03 0 0

0 0 𝑎01 + 𝑎02 + 𝑎05 −𝑎02

0 0 −𝑎03 − 𝑎06 𝑎04 + 𝑎03

]    

(41) 

 

 

𝐺 = [

−𝑎07𝑔 sin(𝜃𝑥)
0

−𝑎07𝑔 sin(𝜃𝑦)

0

]                                               (42) 

 

𝑊 =

[
 
 
 
 
�̈�𝑥 �̈�𝑥 − �̈�𝑥 0 0 �̈�𝑥 0 0

0 0 �̈�𝑥 − �̈�𝑥 �̈�𝑥 0 −�̈�𝑥 −𝑔 sin(𝜃𝑥)

�̈�𝑦 �̈�𝑦 − �̈�𝑦 0 0 �̈�𝑦 0 0

0 0 �̈�𝑦 − �̈�𝑦 �̈�𝑦 0 −�̈�𝑦 −𝑔sin(𝜃𝑦)]
 
 
 
 

            (43) 

 

 

As a result:  

 

𝑀�̈� + 𝐺 = 𝑊𝜌                                                              (44) 

 

Assuming 𝑇𝑥 and 𝑇𝑦 then ,𝜃𝑥, 𝛽𝑥, 𝜃𝑦 and 𝛽𝑦 to be, 

respectively, the system’s inputs and outputs. By 

random numbering of the state variables, we have;  

𝑥1 = 𝜃𝑥                                                                               (45) 

 

𝑥2 = 𝛽𝑥                                                                              (46) 

 

𝑥3 = 𝜃𝑦                                                                               (47) 

 

𝑥4 = 𝛽𝑦                                                                              (48) 

 

𝑥5 = �̇�𝑥                                                                            (49) 

 

𝑥6 = �̇�𝑥                                                                            (50) 

 

𝑥7 = �̇�𝑦                                                                            (51) 

 

𝑥8 = �̇�𝑦                                                                             (52) 

 

We get, from (45) – (52), the first 4 state equations 

as; 

 

�̇�1 = 𝑥5                                                                            (53) 

 

�̇�2 = 𝑥6                                                                            (54) 

 

�̇�3 = 𝑥7                                                                            (55) 

 

�̇�4 = 𝑥8                                                                            (56) 

In order to improve the algebraic linearity of the 

system [12], the equations are further linearized 

about the equilibrium position by assuming the 

angles of the ball (𝜃) and that of the sphere (𝛽), 

to be negligible [13], [14]. Such that, sin(𝜃) = 𝜃, 

cos(𝜃) = 1, sin(𝛽) = 𝛽, and cos(𝛽) = 1. We 

apply these assumptions into equations (7) – (10) 

to get; 

 

𝑎�̈�𝑥 + 𝑏�̈�𝑥 − 𝑚𝑔𝜃𝑥 = 0                                          (57) 

 

𝑐�̈�𝑥 + 𝑑�̈�𝑥 = 𝑇𝑥                                                             (58) 

 

𝑎�̈�𝑦 + 𝑏�̈�𝑦 − 𝑚𝑔𝜃𝑦 = 0                                          (59) 
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𝑐�̈�𝑦 + 𝑏�̈�𝑦 = 𝑇𝑦                                                            (60) 

For:  

𝑎 = ((𝑅 + 𝑟)𝑚 + 𝐼𝑏
𝑅+𝑟

𝑟2 ),𝑏 = (−𝐼𝑏
𝑅

𝑟2),  

𝑐 = (−𝐼𝑏
𝑅(𝑅+𝑟)

𝑟2 ), and 𝑑 = (𝐼𝐵 + 𝐼𝑏
𝑅2

𝑟2) 

 

from where we get the other 4 state equations as 

follows; 

 

�̇�5 = 𝑣𝑥1 − 𝑤𝑇𝑥                                                          (61) 

 

�̇�6 = 𝑧𝑥1 − 𝑒𝑇𝑥                                                            (62) 

 

�̇�7 = 𝑣𝑥3 − 𝑤𝑇𝑦                                                          (63) 

 

�̇�8 = 𝑧𝑥3 − 𝑒𝑇𝑦                                                            (64) 

For:  

𝑣 =
𝑑𝑚𝑔

𝑎𝑑−𝑏𝑐
,   𝑤 =

𝑏

𝑎𝑑−𝑏𝑐
,  𝑧 =

𝑐𝑚𝑔

𝑏𝑐−𝑎𝑑
,  and   𝑒 =

𝑎

𝑏𝑐−𝑎𝑑
,  

 

Which can then be expressed in matrix form as:  

 

[
 
 
 
 
 
 
 
�̇�1

�̇�2

�̇�3

�̇�4

�̇�5

�̇�6

�̇�7

�̇�8]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
𝑣 0 0 0 0 0 0 0
𝑧 0 0 0 0 0 0 0
0 0 𝑣 0 0 0 0 0
0 0 𝑧 0 0 0 0 0]

 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

𝑥7

𝑥8]
 
 
 
 
 
 
 

+

[
 
 
 
 
 
 
 

0 0
0 0
0 0
0 0

−𝑤 0
−𝑒 0
0 −𝑤
0 −𝑒]

 
 
 
 
 
 
 

[
𝑇𝑥

𝑇𝑦
]            (65) 

 

The output equations are; 

 

𝜃𝑥 = 𝑥1                                                                               (66) 

 

𝛽𝑥 = 𝑥2                                                                               (67) 

 

𝜃𝑦 = 𝑥3                                                                               (68) 

 

𝛽𝑦 = 𝑥4                                                                              (69) 

 

In matrix form,  

 

[
 
 
 
𝜃𝑥

𝛽𝑥

𝜃𝑦

𝛽𝑦]
 
 
 

= [

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

]

[
 
 
 
 
 
 
 
𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

𝑥7

𝑥8]
 
 
 
 
 
 
 

+ [

0 0
0 0
0 0
0 0

] [
𝑇𝑥

𝑇𝑦
]     (70) 

 

And the coefficient matrices are; 

 

𝑨 =

[
 
 
 
 
 
 
 
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
𝑣 0 0 0 0 0 0 0
𝑧 0 0 0 0 0 0 0
0 0 𝑣 0 0 0 0 0
0 0 𝑧 0 0 0 0 0]

 
 
 
 
 
 
 

, 𝑩 =

[
 
 
 
 
 
 
 

0 0
0 0
0 0
0 0

−𝑤 0
−𝑒 0
0 −𝑤
0 −𝑒 ]

 
 
 
 
 
 
 

,  

 

𝑪 = [

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

]𝑫 = [

0 0
0 0
0 0
0 0

]                                        (71) 

 

4 Design 

Linear Quadratic Gaussian (LQG) Controller 

Linear Quadratic Gaussian (LQG) controller is widely 

accepted robust control method in the sense that it 

offers more realistic dynamical model which can be 
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utilized for the development of the control scheme by 
considering both plant disturbances and measurement 

/ sensor noises at the same time [15]. 

The dynamic model applied for the controller 

synthesis is the random dynamic model allowing 

consideration of both plant disturbances and sensor 

noises inherent in the LQG control system. This is 

because LQG controllers have in-built or modelled 

with considerations of controller noise and 

measurement noise due to the metering / sensor 

devices. 

The LQG compensator can be represented in a block 

diagram as given in Figure 3 below. 

 

 

 

 

 

 

Figure 3: Control Structure of the LQG [5] 

The optimal control ( )u t
 is given as: 

( ) ( )ˆcu t K x t = −
  
            (72)                                    

Also, the optimal state feedback matrix cK  is written 

as: 

1 T
c cK R B P−=                           (73)                                                

And the symmetrical semi-positive-definite 

matrix which confirms the Algebraic Riccatti 

equation, is represented by equation (74) [16]: 

1 0T T T
c c c cA P P A P BR B P M QM−+ − + =             (74)        

Based on the separation principle, the solution of 

the optimal control problem can be resolved 

independent of the optimal estimation one [1], [15]. 

Wherein for the LQG controller, the state estimator is 

developed and used to derive the Linear Quadratic 
Regulator (LQR) state feedback controller design on 

the assumption that the states are precisely measurable 

for the LQR state feedback controller scheme.  

First, the Kalman-Estimator optimal static gain which 

helps to reconstitute the estimated state vector (using 

Linear Quadratic Estimator (LQE) problem) is 

derived; then the optimal static feedback gain matrix 

found in solution of the LQR (Linear Quadratic 

Regulator) is computed [15]. 

The system physical characteristics are as follows: 

R  –  0.25m 

r   -  0.0125m 

m   -  0.06kg 

M  –  0.5kg 

I     -  3.75 x 10-6kgm2 

J    -  0.0125kgm2 

g    -  9.8m/s2     

 

5   Results and Discussion 

Table 1: System & Initial Parameters 

Parameters Rise 

Time 

(s) 

Settling 

Time (s) 

Peak 

Time 

(s) 

Ball Ang. Disp. in X axis (θx) 0.7474 12.8025 8 

Sphere Ang. Disp. in X axis (βx) 0.7474 12.8244 8 

Ball Ang. Disp. in Y axis (θy) 0.7474 12.8420 8 

Sphere Ang. Disp. in Y axis (βy) 0.7474 12.8564 8 

Ball Ang. Velocity in X axis (θ'x) 0.7474 12.8683 8 

Sphere Ang.Velocity in X axis (β'x) 0.7474 12.8785 8 

Ball Ang. Velocity in Y axis (θ'y) 0.7474 12.8871 8 

Sphere Ang.Velocity in Y axis (β'y) 0.7474 12.8947 8 

 

The design was simulated with MATLAB 2019b 

software and the following results were summarized in 

Table 1. 

Step responses of LQG controller are shown Figures 4  

 Ẋ(t) 
 y(t)  u(t) 

 +      +   

-   -  

 r(t) 

A 

C 

 Measurement       

Noise θ (t) 

Plant         

Noise ξ 

(t) 

 ȗ(t) 

LQG Controller 

- KԐ Kf ʃ G(s) 
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Fig 4a: ϴx - Ball Angular Displacement in X-axis 

Fig 4a above indicates how the system was able to 

stabilize in 12.8025 seconds when subjected to 

disturbance.  

 

Fig 4b: βx - Sphere Anglular Displacement in X-

direction  

In like manner, Fig 4b shows response of the sphere’s 

angular displacement with respect to the x coordinate 

and attaining stability in 12.8244 seconds. 

 

Fig 4c: ϴy - Ball Angular Displacement in Y-axis 

In the y-coordinate, the ball’s angular displacement is 

also stable at 12.8420 seconds after introduction of 

disturbance, as shown in figure 4c. 

 

Fig 4d: βy - Sphere Angular Displacement in Y-

direction 

As depicted in fig. 4d the angular displacement of the 

sphere is controlled in 12.8564 seconds.  
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Fig 4e: ϴ΄x - Ball Angular Velocity in X-direction 

As for the velocity vector in the x-axis, fig. 4e 

highlights that the ball’s angular velocity velocity 

was stabilized in 12.8683 seconds under the same 

disturbance. 

 

 

Fig 4f: β΄x  - Sphere Angular Velocity in X-axis  

The sphere’s angular velocity (fig. 4f) exhibited 

similar response in the x-coordinated by stabilizing at 

12.8785 seconds 

 

Fig 4g: ϴ΄y - Ball Angular Velocity in Y-direction 

Moreover, figs. 4g and 4h  shows the ball’s and 

sphere’s angular velocities attaining stability in 

12.8871 seconds and 12.8947 second respectively 

amidst same disturbance. 

 

Fig 4h: β΄y  - Sphere Angular Velocity in Y-axis 

Figures 4a-4h confirms the controllability and 

observability of the system [17]. Since the model did 

not consider effects of friction the initial conditions 

will have negligible influence on the behaviour of the 

system dynamics [18]. 

Table 2: Dynamic Response of LQG Control 

System 

Dynamic Response of LQG 

Control System 

Value 

(s) 

Ave. Settling Times (secs)      12.85674 

Rise Times (secs)      0.74740 
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On average, Table 2 shows that the LQG controller 

stabilized the ball at averagely 12.85674 seconds for 

all the parameters, with no overshoot.  

6 CONCLUSION 

The control of the BOS through the mechanism of a 

double feedback loop has been accomplished with a 

combination of linear algebraic equations and the 

LQG controller. The simulated results highlights the 

robust and high performance features of the LQG for 

controlling the BOS. Moreover, future research work 

may consider controlling multiple balls on a sphere 

and adopting artificial intelligent techniques for 

accomplishing the control problem. Also there is need 

for further analysis of the system in the frequency 

domain to give more more insight on system 

properties such as causal and anti-causal systems; 

stability; and region of convergence. 
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