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ABSTRACT 

This paper presents a Monte Carlo based Hidden Markov Model (HMM) for fuzzy time 

series forecasting. To make the nature of conjecture and randomness of forecasting more 

realistic, the Monte Carlo method with different simulation size is adopted to estimate the 

forecasting outcome. To address the insufficiency in data associated with the HMM model, 

we adopted a method called smoothing. A number of simulations was performed using 

MATLAB simulation environment. The performance of the model was evaluated using the 

daily average temperature and cloud density of Taipei, Taiwan. In addition to improving 

forecasting accuracy, the proposed model adheres to the central limit theorem, and thus, 

the result statistically approximates to the real mean of the target value being forecasted. 

Results showed that the proposed model attain and MSE, RMSE, and AFEP of 0.8596, 

2.4283, 0.9272 respectively. 

 
 . 

1. INTRODUCTION 

The forecasting problem of time series data plays an 

important role in various domains, such as air pollution, 

population growth, rainfall prediction, and load 

forecasting. It deals with forecasting future outcomes 

from a temporally ordered sequence of past-observed 

data points, whose values are usually real numbers. 

However, traditional time series analysis cannot handle 

the vagueness and uncertainty inherent in certain data 

due to inaccuracies in measurements, incomplete sets 

of observations, or difficulties in obtaining the 

measurements [1]. 

Time series is simply a collection of quantitative 

variables at regular intervals of time. Whether discreet 

or continuous, time series is always both nonlinear and 

non-stationary since they are sample functions realized 

from processes that are always stochastic [2]. Time 

series forecasting plays an important role in a great 

variety of applications, such as predicting university 

enrollments, stock prices, rainfall, blood pressure, and 

so on. Such forecasting usually uses a sequence of past 

data points which are typically measured successively 

for forecasting future outcomes [3]. Various techniques 

for time series forecasting have been evolved in recent 

decades. Compared with other models, Autoregressive 

Moving Average (ARMA) and Autoregressive 

Integrated Moving Average (ARIMA)-based models 

are prominent and highly useful. However, they cannot 

deal with time series vagueness and linguistic terms [4]. 

In addition, these statistical methods could not perform 

appropriately on time series with a small amount of data 

[5]. Furthermore, the necessary conditions for applying 

the conventional time series with probabilistic models 

which requires some assumptions such as number of 

observations, normal distribution, and linearity [6]. 

Thus, these approaches can lead to misleading 

forecasting results when these assumptions are not, 

satisfied. Therefore, non-probabilistic approaches have 

been put forward as an alternative to probabilistic time 

series forecasting models [7].  

To deal with such deficiencies, fuzzy time series (FTS) 

have been developed and widely applied [8]. FTS was 

developed model based on fuzzy logic. In recent years, 

FTS models have attracted the attention of many 

researchers because of their advantages: better 

performance in some real forecasting problems terms 

[4], dealing with data in linguistic terms [9], and their 

ability to integrate with heuristic knowledge and 

models [10, 11].  
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One of the most important issues in FTS models is the 

determination of the relations [12].In the literature, 

many methods were used for determining fuzzy 

relations. These include fuzzy logic group relation 

tables, artificial neural networks, fuzzy relation 

matrices obtained from some fuzzy set operations, 

particle swarm optimization and genetic algorithms 

[12-14]. In the analysis of fuzzy time series, fuzzy logic 

group relationships tables have been generally 

preferred for determination of fuzzy logic relationships. 

The reason of this is that it doesn’t need to perform 

complex matrix operations when these tables are used. 

On the other hand, when fuzzy logic group 

relationships tables are exploited, membership values 

of fuzzy sets are ignored. Thus, in defiance of fuzzy set 

theory, fuzzy sets’ elements with the highest 

membership value are only considered [15]. This 

situation causes information loss and it may affect the 

forecasting performance, negatively. Since the fuzzy 

relationships can be nonlinear and complex, an 

intelligent method is needed to calculate these 

relationships. 

To deal with such deficiencies, Hidden Markov Model 

(HMM) have been developed and applied in 

formulating the fuzzy relationship, where the model 

parameters were estimated using a local search 

technique, known as the Baum Welch algorithm [16]. 

Since parameter learning in Hidden Markov Model 

using the Baum-Welch algorithm is prone to be trapped 

in the local optima, it has become imperative that a 

technique for finding enhanced estimates of the fuzzy 

relations and also avoiding the local optima is required 

[17]. 

In this research work, a forecasting model is proposed 

to enhancing Sullivan and Woodall’s Markov-based 

forecasting one to allow handling two-factor 

forecasting problems. This model is built on the basis 

of the hidden Markov model (HMM), a probabilistic 

model that is commonly applied to time series [18, 19]. 

Moreover, by applying the Monte Carlo method when 

estimating the forecasting outcome, the nature of 

conjecture and randomness of the forecasting are made 

more realistic [20, 21]. To test the effectiveness of the 

model, experiments is conduct in forecasting daily 

average temperature in Taipei, Taiwan and compare the 

results with those from other models. 

The remainder of this paper is organized as follows. In 

Section 2, the basic concept of fuzzy time series is 

briefly introduced in the form of Materials, and in 

Section 3, the Monte-Carlo Simulation forecasting 

model based on HMM is presented. Section 4 shows the 

performance evaluation of the model and a comparison 

of the results. The last section describes our conclusions 

and directions for future work. 

2. MATERIALS 

In this section, the relevant information on the 

methods adopted for this paper is discoursed. 

2.1 Fuzzy Set Theory 

Fuzzy sets were introduced by Lotfi A. Zadeh and 

Dieter Klaua in 1965 as an extension of the classical 

notion of set. At the same time, Salii (1965) defined a 

more general kind of structure called an L-relation, 

which he studied in an abstract algebraic context. Fuzzy 

relations, which are used now in different areas, such 

as linguistics [22-24] and clustering[25], are special 

cases of L-relations when L is the unit interval [0, 1]. 

In classical set theory, the membership of elements in 

a set is assessed in binary terms according to a bivalent 

condition, an element either belongs or does not 

belong to the set. By contrast, fuzzy set theory permits 

the gradual assessment of the membership of elements 

in a set; this is described with the aid of a membership 

function valued in the real unit interval [0, 1]. Fuzzy 

sets generalize classical sets, since the indicator 

functions of classical sets are special cases of the 

membership functions of fuzzy sets, if the latter only 

take values 0 or 1.In fuzzy set theory, classical bivalent 

sets are usually called crisp sets. The fuzzy set theory 

can be used in a wide range of domains in which 

information is incomplete or imprecise, such 

as bioinformatics. 

2.2 Basic Definitions and Operations: 

The fuzzy time series definition used in this project was 

first suggested by Song and Chissom in 1994. 

Definition 1: Let Y (t) (t =0, 1, 2, . . .), a subset of R, be 

the universe of discourse on which fuzzy sets fi(t) (i = 

1, 2, . . .) are defined, and let F(t) be a collection of fi(t). 

Then, F(t) is called a fuzzy time series on Y (t) (t = 0, 

https://en.wikipedia.org/wiki/Lotfi_Asker_Zadeh
https://en.wikipedia.org/wiki/Fuzzy_set#CITEREFSalii1965
https://en.wikipedia.org/wiki/Linguistics
https://en.wikipedia.org/wiki/Cluster_analysis
https://en.wikipedia.org/wiki/Unit_interval
https://en.wikipedia.org/wiki/Set_theory
https://en.wikipedia.org/wiki/Principle_of_bivalence
https://en.wikipedia.org/wiki/Principle_of_bivalence
https://en.wikipedia.org/wiki/Membership_function_(mathematics)
https://en.wikipedia.org/wiki/Membership_function_(mathematics)
https://en.wikipedia.org/wiki/Indicator_function
https://en.wikipedia.org/wiki/Indicator_function
https://en.wikipedia.org/wiki/Crisp_set
https://en.wikipedia.org/wiki/Bioinformatics
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1, 2, . . .). Song and Chissom employed a fuzzy 

relational equation to develop their forecasting model 

under the assumption that the observations at time t are 

dependent only upon the accumulated results of the 

observations at previous times, which is defined as 

follows. 

Definition 2: If, for any fj(t) ∈ F(t), where j ∈ J, there 

exist an fi(t − 1) ∈ F(t − 1), where i ∈ I, and a fuzzy 

relation Rij(t, t − 1), such that fj(t) = fi(t − 1) ◦ Rij(t, t − 

1), let R(t, t − 1) = ∪i,j 

Rij(t, − 1), where “∪” is the union operator and “◦” is 

the composition. R(t, t − 1) is called the fuzzy relation 

between F(t) and F(t − 1), which can be represented 

using the following fuzzy relational equation [3, 26]: 

F(t) = F(t − 1) ◦ R(t, t − 1).                                (1) 

Definition 3: If we suppose that F(t) is caused by F(t − 

1), F(t − 2), . . ., or F(t − m) (m > 0), then the first-order 

model of  F(t) can be expressed as 

F(t) =F(t − 1) ◦ R(t, t − 1)                                   (2) 

Or 

F(t) = (F(t− 1) ∪ F(t− 2) ∪ · · · ∪ F(t− m)) ◦ 

Ro(t, t− m)                                                      (3)                                                                                

where “∪” is the union operator and “◦” is the 

composition. R(t, t − 1) is called the fuzzy relation 

between F(t) and F(t − 1), and Ro(t, t − k) is the fuzzy 

relation that joins F(t) with F(t − 1), F(t − 2), . . ., or F(t 

− k), where the subscript “o” denotes the relationship 

“or.” In the literature, the fuzzy relation Rij(t, t − 1) is 

usually represented by a fuzzy logical relationship rule 

(“IF–THEN” rule), as in [9, 27]. In this project, the 

fuzzy relation is realized by an HMM, which will be 

discussed 

2.3 Hidden Markov Model 

The Markov model proposed in the early 1900s is often 

called an observable (or visible) Markov model [16-

18], so as to be distinguished from the Hidden Markov 

Model. Since the HMM is derived from traditional 

Markov theory, this section begins with a brief 

description for a Markov Model. A Markov model is a 

statistical model, and can be viewed as a typical 

transitional diagram composed of the following 

components: a set of different states; transition between 

states; and transition probabilities, which are 

probabilities linked to transitions. Beginning from a 

start state, a transitional process continues until it 

reaches an end state. The outcome of this sequence of 

states (observations) within a Markov model is called 

Markov chain. Formally, a Markov chain can be 

represented by a series of random variables, 
)1()2()1()0( ,...,,, +mXXXX  each of which takes on a value 

from the state space, },....,,{ 21 NSSSS = [28]. The main 

characteristic of a Markov model is that it predicts the 

future based on the present rather than the past: this is 

termed Markov condition. When the probability of a 

sequence of random variables, ),...,( )1()0( +mXXP  is 

calculated, all the previous random variables are 

considered according to [28, 29]. This is defined as: 

),...,( )1()0( +mXXP =
),...,/(),...,/(.../()( )()0()1()1()0()()0()1()0( mmmm XXXPXXXPXXPXP +−

             (4) 

By assuming the Markov condition, however, Markov 

theory only takes into consideration the current random 

variable by [30]: 

),...,( )1()0( +mXXP =
)/()/(.../()( )()1()1()()0()1()0( mmmm XXPXXPXXPXP +−

     (5) 

To present the Markov model’s features, a simple 

example was provided. Figure 1. shows an example of 

a simple Markov model for tossing a coin. Each state of 

the model corresponds to the outcome of an observation 

(also called an event), either Heads 
)(H

 or Tails 
)(T
 

of a coin.  

The numbers along the lines or curves specify transition 

probabilities linked to a directed path between the two 

states connected by the lines or curves. The arrows 

indicate the direction of the state transition. The S  in 

figure 1 shows the special state serving as the starting 

point in the model. This model must start from the 

special state and can move to other states by adding the 

probabilities corresponding to the direction that it takes. 

 
Figure 1: Markov Model for Tossing One Coin 
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3.  METHODOLOGY 

3.1   Monte Carlo Based HHMM FTS Model 

Under realistic circumstances, there are usually 

multiple related factors that influence the behavior and 

outcome of any event. For example, when trying to 

predict today’s temperature, we could easily look up 

and observe the clouds in the sky. If there are dense 

clouds, it can be intuitively inferred that the 

temperature will be low. However, temperature 

depends on not only cloud density but also temperature 

values in previous days. We thus might obtain a better 

forecast for today’s temperature by combining 

knowledge about what happened in previous days with 

the observed cloud state. These kinds of problems are 

constantly encountered in the real world, which is why 

our paper focuses on targeting them. Of course, the 

state of the temperature is not merely controlled by both 

factors, as elements such as winds and air pressure are 

also likely to have an impact. However, in this paper, 

we limit ourselves to problems concerning two factors, 

in which both are probabilistically related. This can be 

formally represented as follows: 

Given two fuzzy time series F(t) = {fi(t)|t = 1, 2, . . . , 

T, i = 1, 2, . . . , n}cc and G(t) = {gi(t)|t = 1, 2, . . . , T, i 

= 1, 2, . . .,m}, where fi(t) and gi(t) are the respective 

states at time t, the fuzzy relation among F(t), 

G(t), and F(t − 1) can be formulated as a fuzzy 

relational equation [16]: 

F(t) = (F(t − 1),G(t)) ◦ R(t, t − 1). 

To solve the forecasting problem of fi(t), which is 

dependent on fi(t − 1) and gi(t), the theory of HMM is 

applied, in which F(t) and G(t) are the hidden and 

observed state sequences, respectively. 

 

3.2       HMM Fuzzy Time Series Forecasting 

The proposed forecasting model expands Sullivan and 

woodalls model by combining HMM and Monte 

Carlos simulation and consists of the following five 

steps. . In developing the HMM based FTS model, 

there are some very important pre-processing steps 

(sorting, fuzzification, relationship representation, 

optimization and defuzzification) that make up the 

model. In this research, the historical data was 

obtained from the work of Cheng & Sheng (2010). 

About 60% of the data was used for training the model 

and the rest was used to test the model. 

3.2.1 Define the Universe of Discourse  

In defining the universe of discourse, the minimum 

value 
minD and the maximum value maxD of the 

historical data sets were first determined. Based on

minD and maxD , the universe of discourseU  is defined 

as follows: 

 2max1min , DDDDU +−=        (6) 

where:  

1D  and 
2D  are any two positive integers.  

HMM model is a bivariate model and thus, it will then 

have two universes of discourse given as [31]: 

 2max1min , sssss DDDDU +−=       (7) 

 2max1min , ooooo DDDDU +−=       (8) 

where: 

sU and oU  are the universe of discourses for the hidden 

variables and observation variables. 

minsD , maxsD , minoD ,and maxoD are the respective 

minimal and maximal values of thehistorical data of 

hidden and observation variables while ,
1sD 2sD ,

,
1oD and 2oD  are the corresponding proper positive 

numbers. 

 

 

3.2.2 Partition the Universe of Discourse into 

 Several Even Lengthy Intervals 

In this section, the universe of discourse U is 

partitioned into n equal intervals using the equal 

interval method defined as: 

)]([ minmin1 lDDI +→=                    (9) 
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)]2()[( minmin2 lDlDI +→+=     (10) 

)]())1([( minmin nlDlnDI n +→−+=                 (11) 

Where: 

21 , II and nI represents the first, second and nth 

partitions respectively, while l is the interval length 

defined as [5]: 

( )  max 2 min 1
1 ( ), ( )l D D D D

n
=  − +                 (12) 

where: 

n  is the number of intervals. 

In this research, the hidden variables universe of 

discourse sU  is partitioned as: 

)]([ minmin1 lDDu +→=    (13) 

)]2()[( minmin2 lDlDu +→+=   (14) 

)]())1([( minmin nlDlnDun +→−+=  (15) 

( )  max 2 min 1
1 ( ), ( )s s s s sl D D D D

n
=  − +  (16) 

Where: 21 ,uu and nu  represents the first, second and 

nth partitions respectively, while sl is its interval 

length. 

Similarly, observation variables universe of discourse 

oU  is partitioned as: 

)]([ minmin1 lDDv +→=      (17) 

)]2()[( minmin2 lDlDv +→+=                 (18) 

)]())1([( minmin nlDlnDvn +→−+=     (19) 

( )  max 2 min 1
1 ( ), ( )o o o o ol D D D D

m
=  − +     (20) 

Where: 21 ,vv and nv  represents the first, second and 

nth partitions respectively, while ol  is the interval 

length. 

3.2.3 Defining the Fuzzy Sets on the Universe of 

 Discourse 

Next, the fuzzy sets are defined for the intervals.  

There is no restriction on the number of the fuzzy sets 

defined. In this research n  and m  linguistic fuzzy 

setswere defined for the hidden and observation 

variables’ intervals, respectively 

3.2.4 Fuzzifying the Time Series Data 

Given a traditional crisp time series, fuzzification 

procedure to obtain the corresponding fuzzy set is 

performed. With the fuzzy sets that are properly 

defined, the crisp time series are fuzzified using the 

method of general membership functions [32]. 


=

=
n

j j

ij
i u

A
1


       (21) 

Where: 
ij   is the membership function of the fuzzy 

sets iA , such that: 

]1,0[→=U
iA       (22) 

 Hence, a fuzzy value of some raw datum of time series 

was obtained.  

In this research, for hidden states, an n fuzzy sets were 

defined on sU using general membership functions 

expressed as follows:  


=

=
n

j j

ij
i u

S
1


                                            (23) 

where:  

ij is the membership degree of iS belonging to 
ju  

which is defined by [16]: 

𝜇𝑖𝑗 = {

1,      𝑖𝑓 𝑗 = 1                     
0.5,   𝑖𝑓 𝑗 = 𝑖 − 1 𝑜𝑟 𝑖 + 1
0,      𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             

    (24) 

For a given historical datum tY , its membership degree 

belonging to interval iu is determined by the following 

heuristic rules. 
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Rule 1) If tY is located at
1u , the membership degrees 

are 1 for
1u , 0.5 for

2u , and 0  otherwise. 

Rule 2) If tY belongs to iu , 1 < i < n , then the degrees 

are 1, 0.5, and 0.5 for iu , 1−iu , and 1+iu , 

respectively, and 0 otherwise. 

Rule 3) If tY is located at nu , the membership degrees 

are 1 for nu , 0.5 for 1−nu , and 0 otherwise. Then, tY

is fuzzified as
jS , where the membership degree in 

interval j is maximal. 

For observable states, m fuzzy setscan be defined on

oU  as expressed as follows [16]: 


=

=
m

j j

ij
i u

O
1


                   (25) 

Where:  

ij is the membership degree of iO belonging to 
jv

and is defined by 

𝜇𝑖𝑗 = {

1,   𝑖𝑓 𝑗 = 1                         
0.5,   𝑖𝑓 𝑗 = 𝑖 − 1 𝑜𝑟 𝑖 + 1
0, 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                 

    (26) 

The observation variables were fuzzified in the same 

way as the hidden variable. 

3.2.5 Building the HMM Model to Estimate the 

 Fuzzy Relations  

The HMM was characterized into the following three 

matrices. 

 ,ijaA =        (27)

  

where:  

( )1,/, −= tStSPa ijrij      (28) 

 ,i =             (29)

  

where: 

)1,( iri SP=      (30) 

 ijbB =      (31)

  

Where:  

ijb =  1/ −== tStOP ijr
   (32) 

The parameter set were estimated using the following 

expressions: 

a) The initial state vector π is set to be a n1 matrix 

and is defined as:  

1

)1(
)1,(

N

Sn
SP i

iri ==    (33) 

Where; )1( iSn is the number of the initial state iS in the 

data set and 

( ) =
=

n

i iSnN
11 1,                   (34) 

b) The state-transition matrix  ,ijaA = is an nn

matrix defined as[16]: 

( )
)1,(

)1,(
1,/

,

,
−

−−
=−=

tSn

tStSn
tStSPa

i

ij

ijrij                 (35) 

Where: 

)1,( , −− tStSn ij
 is the number of transitions from 

state i at time 1−t  to state j  at time t , )1,( −tSn i  is 

the total number of transitions to state i  at time 1−t , 

0 ija  and  =
=

n

j ija
1

,1 ni 1  

c) The confusion matrix  ijbB = is an n × m matrix 

represented as[16]: 

  
( )

( )tSn

tStOn
tStOPb

i

ij

ijrij
,

,/,
1/ =−===                 (36) 

where:  

( )tStOn ij ,/,  is the number of observing the 

observable symbol j and state i  at the same time t , 
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( )tSn i ,  total number of transitions to the iS at time t , 

0 ijb and  =
=

m

j ijb
1

,1 ni 1 . 

3.2.6 Smoothing HMM Model parameters. 

The traditional smoothing methods reviewed in the 

literature were commonly applied in the field of speech 

recognition, in which the states are crisp in nature, and 

thus, they are inappropriate for the case of fuzzy time 

series. Thus, a smoothing technique that can deal with 

the fuzziness existing in the HMM based FTS will 

therefore be employed. Thus, the following smoothing 

techniques were adopted in this research [16]: 

LAAAs +=        (37) 

where: 

sA  is the smoothed transition matrix, A is the original 

estimated transition matrix and LA  is the Adjusted 

transition matrix defined as: 

 ( )  ( )  ( )  ( ) 1,...,4,3,2,1:,
2

1
:,1:,

2

1
:, −=++−−= niiAkiAkiAkiA PPPL (38) 

where; k  is the smoothing factor that represents the 

degree of smoothness and 
PA  is the peak matrix of A  

determined as[16, 19]: 

𝑎𝑦
𝑝
= {

𝑎𝑦 𝑖𝑓 𝑎𝑦 𝑖𝑠 𝑎 𝑝𝑒𝑎𝑘 𝑖𝑛 𝑟𝑜𝑤 ,

0,   𝑖𝑓  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                 
 

The confusion matrix B was smoothed similarly using 

the expression: 

LBBB s +=        (40) 

Where;
sB  is the smoothed transition matrix, B is the 

original estimated transition matrix and LB  is the 

Adjusted transition matrix defined as [33-35]: 

 ( )  ( )  ( )  ( ) 1,...,4,3,2,1:,
2

1
:,1:,

2

1
:, −=++−−= niiBkiBkiBkiB PPPL    (41) 

where; 
PB  is the peak matrix of B  determined as: 

𝑎𝑦
𝑝
= {

𝑎𝑦, 𝑖𝑓 𝑎𝑦 𝑖𝑠 𝑎 𝑝𝑒𝑎𝑘 𝑖𝑛 𝑟𝑜𝑤 ,

0,   𝑖𝑓  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                  ,
 

The procedural program for smoothing the model 

parameters can be found. 

3.2.7 Calculating Forecast Outputs 

In this research, the probabilistic forecast method was 

adopted at computing the forecast output. The 

forecasting problem was represented as:    

 Given two fuzzy time series, 

 niTttStftF i ,...,2,1,,...,2,1),()()( ====     (43) 

 mjTttOtgtG i ,...,2,1,,...,2,1),()()( ====     (44) 

The fuzzy relation among F(t), G(t), and F(t − 1) can 

be formulated as a fuzzy relational equation:  

)1,())(),1(()( −−= ttRtGtFtF    (45) 

where; )(tF  and )(tG  are the hidden and observed state 

sequences, respectively. To solve the forecasting 

problem of )(tf i , which is dependent on )1( −tf i  and

)(tg i , the theory of HMM is applied. Thus, the 

probability of tS i is determined by )1,/,( −tStSP xir
 and 

),/,( tStOP iyr
. 

The probabilities of all possible hidden states occurring 

at time )2( tt  with the transition influence of the 

previous hidden state 1, −tS x
 and the observation state 

tOk ,  are then computed. 

This relation is represented by the function 

),,1,( tOtS yxt −  which is defined as follows: 

),,1,( tOtS yxt − =     :),(*.(:, xAyB STS
    (46) 

where;   :),( xAS  is the xth row of state-transition 

matrix SA and  )(:, yB S  is the yth  column of 

confusion matrix 
SB . The symbol of operator *""  is 

an array multiplication, and thus, BA * means the 

element-by-element vector multiplication of 
SA and

SB . 

For the special case when 1=t , where the observation 

state is the only information available, the previous 

hidden state does not exist, and therefore the probability 
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of the hidden state iS at 1=t   was determined by a 

function ))1,((1 yO , which is defined as: 

 TS

y yBO (:,))1,((1 =      (47) 

where; *""  is defined as earlier, ),,1,( tOtS yxt −  and 

))1,((1 yO  result in a probability matrix presenting the 

probabilities of hidden states that may occur. 

The forecasting result is located at the state with the 

highest probability. However, according to the 

probability theorem, an event with a higher probability 

only has a greater chance of occurring, but may not 

necessarily occur. Due to the nature of conjecture and 

randomness, a stochastic simulation, based on Monte 

Carlo method is adopted to estimate the true outcome 

of each forecast. The Monte Carlo method provides 

approximate solutions by stochastic sampling 

experiments and solves problems based on random 

numbers and probability statistics. The forecasting 

process consists of two subsequent tasks: normalization 

and Monte Carlo simulation.  For the model to obey the 

row stochasticity constraint, the normalization was 

performed for the probability vectors of functions 

),,1,( tOtS yxt − and ))1,((1 yO , which are 

expressed, respectively, as [33]: 

),,1,( tOtSN yxt − = ],...,,[ 21 nS

t

S

t

S

t    (48) 

))1,((1 yON = ],...,,[ 111
21 nSSS

   (49) 

Where: 


=

−

−
=

n

i

xiriyr

xiriyrS

t

tStSPtStOP

tStSPtStOP
i

1

)1,/,(),/,(

)1,/,(),/,(
   (50) 

iS

1 =


=

=
n

i

iyr

iyrS

t

SOP

SOP
i

1

)1,/1,(

)1,/1,(
   (51) 

A stochastic experiment consisting of l Monte Carlo 

simulations is conducted to determine the forecasting 

result iS  from ),,1,( tOtS yxt −  or ))1,((1 yO . These 

forecasting results were represented with a vector C as: 

],...,,[ 21 ncccC =     (52) 

Where; ic is the number of forecasting hidden states 

belonging to 
iS and 

1

n

i

i

l c
=

=      (53) 

The procedural program for carrying out these 

processes can be found in appendix X. 

3.2.8 Defuzzifying the Forecasting Outputs 

For simplicity, the defuzzification method based on 

center of gravity method was employed. This is 

expressed as follows:  





=

=



n

i

i

n

i

ii

c

tc

1

1      (54) 

where: 

ti= = 

{
 
 

 
 
1

1.5
  (𝑚1 + 0.5 × 𝑚2                                        𝑖 = 1                   

1

2
(0.5 × 𝑚𝑖−1 +𝑚𝑖 + 0.5 × 𝑚𝑖+1) 𝑖 = 2,3,… 𝑛 − 1

1

1.5
(0.5 × 𝑚𝑛−1 +𝑚𝑛)                       𝑖 = 𝑛                     

 

and 
im is the middle point of interval iu  

4.         EXPERIMENT AND EVALUATION 

In order to demonstrate the effectiveness of the 

proposed forecasting model, we conducted one 

experiments using real world data. The experiment 

consisted of forecasting temperature with observable 

cloud density in Taiwan. 

4.1  Experiments Forecasting Temperature 

 with Cloud Density Data 

The time series data considered in this project is the 

historical data of the daily average temperature and 

cloud density in Taipei, Taiwan, obtained from the 

work of Cheng & Sheng (2010).  

TheHMM FTS model was applied to forecast 

temperature with cloud density data. The time span of 

the data used is from June to September for 1993, 
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1994, 1995, and 1996. The data were divided into two 

parts, i.e., that for 1993, 1994, and 1995 was used as 

the training set to establish the parameter of λ, and that 

for 1996 was used as the testing set to evaluate 

forecasting performance 

4.2 Defining the Universe of Discourse of the 

 Historical Data 

From the data, the following values for the hidden 

variables and observation variables were obtained. For 

the hidden variable (Temperature data) 

maxsD =32.2, 
minsD =21.6, )32,21(=sU  

Where; 
1sD  and 

2sD  were assumed to be 2.7 and 

1.4 respectively. These were adequately selected to 

ensure the smoothness of boundaries of the interval. 

For the observation variable (Cloud density data) 

maxsD =31.6,
minsD = 23.7 )100,0(=oU  

Where; 
1oD and 2oD  were assumed to have 0 values 

respectively.   

Using equation 16 and 20 the length of interval of both 

hidden and observable were calculated and the partition 

was obtained. 

  = (
1

6
) × [(31.6 + 1.4) − (23.7 − 2.7)] 

  = 2 

4.3 Partitioning the Obtained Universe of 

 Discourse  

For the hidden variables (Temperature data), the 

universe of discourse )32,21(=sU , was partitioned 

into 6 temperature intervals using an interval length of 

2 as follows:   

 23,211 =u ,  25,232 =u ,  27,253 =u

 29,274 =u ,  31,295 =u ,  33,316 =u  

Similarly, the observation variable’s universe of 

discourse )100,0(=oU  was partitioned into 5 cloud 

density intervals expressed as: 

 20,01 =v ,  40,202 =v ,  60,403 =v  

 80,604 =v  and  100,805 =v using the interval 

length of 20. 

4.4 Fuzzifying the Time Series Data 

For the linguistic variable ‘Temperature’, 6 fuzzy sets 

were defined which corresponds to the number to which 

its universe of discourse was partitioned. The used 

linguistic values are:  

=1S (Freezing), =2S (Cold), =3S (Cool) 

=4S (Mild), =5S (Warm) and =6S (Hot) 

Similarly, for the linguistic variable ‘cloud density’, 5 

fuzzy sets were defined expressed as:  

=1O (Very low), =2O (Low), =3O (Medium)  

=4O (High) and =5O (Very high) 

Figure 2 shows the flow chart adopted for the 

implementation of the proposed model. 

5 RESULTS AND DISCUSSION 

Different number of Monte Carlo simulation was 

carried using 1000 (M1000), 500 (M500), 200 (M200) 

and 100 (M100) as number of Monte Carlo samples. 

The Monte Carlo simulation was performed using the 

equation given as: 

𝑦(𝑡) =  ∑
𝑥(𝑡)

𝑚
𝑚
𝑖=1 (55)  

where y(t) is the output, x(t) is the input and m are the 

number of Monte Carlo simulation. 

5.1 Results of the Defuzzified Forecasting 

 Outputs: 

The technique discussed in section 5 was employed 

with different values of Monte Carlo simulation and the 

forecasted values are shown in table VII. 

The experimental results are plotted in graphs for the 

month of June, 1996 as shown in Figures 1 to 4and the 

one with best trend is selected 
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Figure 2:  The flow chart of the proposed model 

 

 
Figure 3 Comparison between Actual and Forecasted 

Values for June, 1996 using 1000 Monte Carlo simulation 

From the Figure 3, it shows that for 1000 Monte Carlo 

simulation, the predicted values are in trend with the 

actual values. In figure 3 the blue line shows the actual 

values and the red line shows the predicted values. 

 
Figure 4. Comparison between Actual and Forecasted 

Values for June, 1996 using 500 Monte Carlo Simulation 

From the figure above (Figure 4) it shows that for 500 

Monte Carlo simulations, the predicted values are in 

trend with the actual values and it indicate best trend 

compare to 1000 Monte Carlo simulation. In Figure 4 

the blue line shows the actual values and the red line 

shows the predicted values. 

 
Figure 5 Comparison between Actual and Forecasted 

Values for June, 1996 using 200 Monte Carlo Simulation 

From the figure above (Figure 5) it shows that for 200 

Monte Carlo simulations the predicted values are in 

trend with the actual values and it indicate best trend 

compare to 1000 Monte Carlo simulation but not as best 

as 500 Monte Carlo simulations. In figure 5 the blue 

line shows the actual values and the red line shows the 

predicted values. 
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Figure 6 Comparison between Actual and Forecasted 

Values for June, 1996 using 100 Monte Carlo Simulation 

From the figure above (Figure 6) it shows that for 100 

Monte Carlo simulation the predicted values are in 

trend with the actual values and it indicate best trend 

compare to 1000 Monte Carlo simulation but not as best 

as 500 Monte Carlo simulations.  

When the graphs were analyzed, results obtained show 

that increasing the Monte Carlo simulation affects the 

general data trend of the time series in varying 

degrees; decreasing the ratio of positive-to-negative 

trends. Also, results show that increasing the Monte 

Carlo simulation does not necessarily increase the 

forecast accuracy regardless of the structure of the 

time series. The error is increasing in most cases 

probably because of the increase in the uncertainty of 

the data trend accessioned by increase in Monte Carlo 

simulation. 

5.2 Performance Evaluation 

In order to test the superiority of the proposed model, 

the performance of the proposed fuzzy time series 

forecasting model was evaluated using the performance 

measures of Mean Square Error (MSE) and the results 

are compared with those obtained in the work of Cheng 

& Sheng (2012). To make the comparison fair, the same 

intervals and factors were used. The performance was 

further validated using the Average Forecasting Error 

percentage (AFEP).  The MSE and AFEP results are 

shown in Table 2. 

It can be seen from Table 2 that the result of the 

proposed methodhas the smallest MSE and AFEP 

values of 0.8596 and 2.4283respectively, when 

compared with the values obtained for both models in 

Cheng & Sheng (2012).  

Furthermore, the performance of the model was also 

compared with the methods proposed by Cheng & 

Cheng (2010), Cheng & Sheng (2006) and Lee (2006) 

in terms of the MSE, RMSE and AFEP presented in 

Table 2.  

 

The comparative analyses in TableVIII signify that the 

proposed model exhibits higher forecasting accuracy 

than those of considered competing models in terms of 

MSE, RMSE and AFEP for the bivariate daily average 

temperature data. 

6. CONCLUSION 

This paper has implemented a stochastic forecasting 

model for fuzzy time series by extending Sullivan and 

Woodall’s Markov-based model. It was built upon an 

HMM in which the fuzzy relationships were formulated 

as state transitions so that it can handle two-factor 

forecasting problems. To allow the model to more 

effectively reflect the real-world situation and 

randomness of forecasting, Monte Carlo simulation 

was applied to estimate the stochastic outcome. The 

computations involved in forecasting were simple 

matrix operations, and thus, the model is more efficient 

than other “IF–THEN”-based models. The model was 

used to forecasting problem of daily average 

temperature and cloud density in Taipei, Taiwan, as the 

benchmark and conducted performance comparisons 

with other models. The results demonstrated the 

superiority of our model in forecasting. Moreover, the 

implemented probabilistic forecasting model adheres to 

the central limit theorem, proved by an experiment of 

sensitiveness, and thus, the forecasting results 

statistically approximate to the real mean of the target 

value being forecast. 
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Table 1: Forecasting Results of the Proposed Method for Average Temperatures of the Month of June 1996 in Taipei, Taiwan 

Days Actual Value (AV) Forecast Value (FV) (FV-AV) (FV-AV)2 | FV-AV | 

1 26.1 27.31 1.21 1.4641 1.21 

2 27.6 26.15 -1.45 2.1025 1.45 

3 29 26.15 -2.85 8.1225 2.85 

4 30.5 30.11 -0.39 0.1521 0.39 

5 30 29.61 -0.39 0.1521 0.39 

6 29.5 29.17 -0.33 0.1089 0.33 

7 29.7 29.18 -0.52 0.2704 0.52 

8 29.4 29.17 -0.23 0.0529 0.23 

9 28.8 29.61 -0.81 0.6561 0.81 

10 29.4 29.11 -0.29 0.0841 0.29 

11 29.3 29.63 0.33 0.1089 0.33 

12 28.5 29.63 1.13 1.2769 1.13 

13 28.7 27.6 -0.11 0.0121 0.11 

14 27.5 28.5 1 1 1 

15 29.5 28.5 -1 1 1 

16 28.8 29.61 0.81 0.6561 0.81 

17 29 28.5 -0.5 0.25 0.5 

18 30.3 29.98 -0.32 0.1024 0.32 

19 30.2 30.04 -0.16 0.0256 0.16 

20 30.9 30.06 -0.86 0.7396 0.86 

21 30.8 29.61 -1.19 1.4161 1.19 

22 28.7 29.17 0.47 0.2209 0.47 

23 27.8 27.6 -0.2 0.04 0.2 

24 27.4 27.6 0.2 0.04 0.2 

25 27.7 29.11 1.41 1.9881 1.41 

26 27.1 28.5 1.4 1.96 1.4 

27 28.4 28.5 0.1 0.01 0.1 

28 27.8 29.11 1.31 1.7161 1.31 

29 29 29.11 0.11 0.0121 0.11 

30 30.2 29.98 -0.22 0.0484 0.22 

   SUM 25.789  

Table 2: Performance Comparison 

Performance 

Measures 

Cheng 

& 

Sheng 

(2006) 

Lee et 

al., 

(2006) 

Cheng 

& 

Sheng 

(2010) 

Proposed 

Method 

MSE 1.6948 1.034 0.995 0.8596 

AFEP 3.7409 2.97 2.8071 2.4283 

RMSE 1.1799 1.0361 1.0481 0.9272 
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