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ABSTRACT 

In the estimation of maximum biodiesel yield, a proportion of oil palm and cotton-seed oil of ratio 60% to 40% 

(P60C40) as given in the literature was collected for the production of biodiesel through ultrasound assisted trans-

esterification process. The challenge in the estimation of biodiesel yield, is to find an appropriate regression model 

that would adequately capture maximum biodiesel yield production that would reflect the experimental yield of 

biodiesel via three factors namely; reaction time, methanol-to-oil ratio and concentration of catalyst. The existing 

techniques; second-order linear regression and the Artificial Neural Network (ANN) were utilized but could not 

capture local variability in the data because the coded factors lack the axial (star) points which allows for the estimation 

of curvature and maintain rotatability in the data. In other to address the challenge, we introduce an axial points to the 

coded factors as employed in the experimental design known as the Circumscribed Central Composite Design (CCCD) 

and the proposed adaptive local linear regression model to improve the goodness-of-fit statistics for Response Surface 

Methodology (RSM) data. The results obtained show that the proposed adaptive local linear regression model gave 

the maximum biodiesel yield of 96.31% that is approximately equal to the experimental biodiesel yield of 96.32% 

over the Ordinary Least Squares (OLS) of 94.95%, Second-order linear regression model of 96.41% and ANN of 

96.67% respectively. In addition, the proposed adaptive local linear regression model has the least residual error over 

the other models utilized in this paper.  

Keywords: Adaptive local linear regression model, Second-order regression model, Artificial Neural Network, 

Biodiesel yield, Response surface methodology, Circumscribed central composite design. 
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INTRODUCTION 

 

Response Surface Methodology is defined as statistical 

technique applied by engineers and industrial statistician 

for empirical model building, with the aim of optimizing 

the response variables which are influenced by several 

explanatory variables [1, 2]. 

RSM is appropriate for optimizing the response 

variable 𝒚 as a function of several explanatory variables 

(𝑥𝑖1,  𝑥𝑖2,  .  .  .  ,  𝑥𝑖𝑘) which can be modeled as: 

𝑦𝑖 = 𝑓(𝑥𝑖1 ,  𝑥𝑖2, … , 𝑥𝑖𝑘) + 휀𝑖,    𝑖 = 1,2, … , 𝑛  

    (1) 

where 휀𝑖 is the error term and assumed to have a normal 

distribution with mean zero and variance 𝝈2.  

The surface represented by  𝑓(𝑥𝑖1 ,  𝑥𝑖2,  .  .  .  ,  𝑥𝑖𝑘) is 

termed a response surface [3]. 

The true response function 𝑓 is usually 

unknown which must be estimated. Applying RSM, we 

seek to identify the functional relationship between the 

responses 𝑦 and associated explanatory variables 

(𝑥𝑖1,  𝑥𝑖2,  .  .  .  ,  𝑥𝑖𝑘). 

The general parametric regression model in 

matrix notation can be written as: 

 𝒚 = 𝑿𝜷 +  𝜺           

                 (2) 

where 𝒚 is a vector of response, 𝑿 = 𝑿(𝑂𝐿𝑆) is the OLS 

model matrix, 𝜷 is the unknown parameter vector and 𝜺 

is the vector of error term assumed to be normally 

distributed with zero mean and constant variance 

property.  

The common approach for estimating the 

parameter vector in equation (2) is usually based on the 

Method of OLS. The parameter vector estimates �̂�  in 

(2) is given as: 

�̂�(𝑂𝐿𝑆) =  (𝑿′(𝑂𝐿𝑆)𝑿(𝑂𝐿𝑆))
−1

𝑿′(𝑂𝐿𝑆)𝒚,   𝑿 = 𝑿(𝑂𝐿𝑆) ,  is 

the OLS model matrix.   (3) 

The estimated responses for the 𝑖𝑡ℎ location can be 

written as: 

�̂�𝑖
(𝑂𝐿𝑆)

= 𝒙𝒊
′(𝑂𝐿𝑆)

�̂�(𝑂𝐿𝑆) =

𝒙𝒊
′(𝑂𝐿𝑆)

(𝑿′(𝑂𝐿𝑆)𝑿(𝑂𝐿𝑆))
−1

𝑿′(𝑂𝐿𝑆)𝒚 , 𝑖 = 1,2, … , 𝑛  

  (4) 

where 𝒙𝒊
′(𝑂𝐿𝑆)

is the 𝑖𝑡ℎ row of matrix 𝑿(𝑂𝐿𝑆),   𝑛 × (𝑘 +

1) vector [4]. 

𝑯𝒊
′(𝑂𝐿𝑆)

=  𝒙𝒊
′(𝑂𝐿𝑆)

(𝑿′(𝑂𝐿𝑆)𝑿(𝑂𝐿𝑆))
−1

𝑿′(𝑂𝐿𝑆) is the 𝑖𝑡ℎ 

row of the OLS “HAT” matrix of dimension 𝑛 × 𝑛, 

𝑯(𝑂𝐿𝑆). The estimated response in the 𝑖𝑡ℎ location is 

given by:  

   �̂�(𝑂𝐿𝑆) = 𝑯(𝑂𝐿𝑆)𝒚 .   

     (5) 

where the matrix 𝑯(𝑂𝐿𝑆) is given as: 
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 𝑯(𝑂𝐿𝑆) =

[
 
 
 
 𝑯1

(𝑂𝐿𝑆)

𝑯2
(𝑂𝐿𝑆)

⋮

𝑯𝑛
(𝑂𝐿𝑆)

]
 
 
 
 

,   

     (6) 

[4, 5] 

This is an experimental design used in fitting a 

second-order regression model. A second-order 

regression model is given as:      

 

 𝑦𝑖 =  𝛽0 +  ∑ 𝛽𝑗
𝑘
𝑗=1 𝑥𝑖𝑗 + ∑ 𝛽𝑗𝑗𝑥𝑖𝑗

2𝑘
𝑗=1 +

∑ ∑ 𝛽𝑗𝑟
𝑘
𝑟=𝑗+1

𝑘−1
𝑗=1 𝑥𝑖𝑗𝑥𝑖𝑟 + 휀𝑖, i= 1,2, … , 𝑛;  𝑟 = 𝑗 +

1, 𝑗 + 2,… , 𝑘          

                (7)   

where 𝑥𝑖𝑗 ,  𝑥𝑖𝑟  are the explanatory variables; 𝛽0 is a 

constant coefficient; the varying coefficients 𝛽𝑗 ,  𝛽𝑗𝑗 and 

𝛽𝑗𝑟  are the coefficients of linear, quadratic and 

interaction terms respectively. 

The parametric regression model may be 

superior if the user can adequately specify a parametric 

form for the data. Otherwise, the parametric regression 

model is misspecified and the optimal settings of the 

explanatory variables become miscalculated. Hence, a 

flexible regression model that does not give reference to 

a parametric form is preferred over the parametric form, 

the Local Linear regression (LLR) model. 

 

 

 

MATERIALS AND METHODS  

 

The LLR model is a weighted form of the least squares 

derived from Local Polynomial Regression of order one 

(𝑑 = 1) which can adjust to bias both at the boundaries 

and unequal spacing of the explanatory variables [6, 7].  

 

The Adaptive Local Linear Regression Model (LLR) 

The LLR model is derived from standard least squares 

theory. The LLR estimator �̂�𝑖
(𝐿𝐿𝑅)

 of 𝒚𝑖 is given as: 

�̂�𝑖
(𝐿𝐿𝑅)

=

𝒙𝒊
′(𝐿𝐿𝑅)

(𝑿′(𝐿𝐿𝑅)𝑾𝒊𝑿
(𝐿𝐿𝑅))−𝟏𝑿′(𝐿𝐿𝑅)𝑾𝒊𝒚 = 𝑯𝒊

(𝐿𝐿𝑅)
𝒚,              

  (8) 

where 𝒚 = (𝑦1, … 𝑦𝑛)′, 𝒙𝒊
′(𝐿𝐿𝑅)

= (1 𝑥𝑖1 …𝑥𝑖𝑘) is the 𝑖𝑡ℎ 

row of the LLR model matrix, 𝑿(𝐿𝐿𝑅) given as:   

𝑿(𝐿𝐿𝑅) =  [

1 𝑥11 𝑥12 ⋯ 𝑥1𝑘

1 𝑥21 𝑥22 ⋯ 𝑥2𝑘

⋮ ⋮ ⋮ ⋱ ⋮
1 𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑘

] 

                               (9)       

 

We define W, an 𝑛 × 𝑛 diagonal matrix of kernel 

weights for estimating the response as  

 𝑾 =  𝒄𝒊𝜹𝒊𝒑,   𝑖 = 1,    2  ,    .    .    .   , 𝑛 ; 

𝑝 = 1,    2  ,    .    .    .   , 𝑛   

where 𝑐𝑖 are kernels weight at ith location and 𝛿𝑖𝑝 is the 

Kronecker delta function given as 

 𝛿𝑖𝑝 = {
1,   𝑖𝑓 𝑖 = 𝑝

     0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 𝑖 =

1,    2  ,    .    .    .   , 𝑛 ; 𝑝 = 1,    2  ,    .    .    .   , 𝑛               (10) 

Thus,  

 𝑾 =  [

𝑐1𝛿11 𝑐1𝛿12 ⋯ 𝑐1𝛿1𝑛

𝑐2𝛿21 𝑐2𝛿22 ⋯ 𝑐2𝛿2𝑛

⋮ ⋮ ⋱ ⋮
𝑐𝑛𝛿𝑛1 𝑐𝑛𝛿𝑛2 ⋯ 𝑐𝑛𝛿𝑛𝑛

]  

                    

(11) 

𝑾 =  [

𝑐1 0 ⋯ 0
0 𝑐2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑐𝑛

]  

where 𝑐1 =  𝑤𝑖1, 𝑐2 =  𝑤𝑖2, …, 𝑐𝑛 =  𝑤𝑖𝑛 . In terms of 

location, 𝑾 =  𝑾𝒊  

 

 𝑾𝒊 =  [

𝑤𝑖1 0 ⋯ 0
0 𝑤𝑖2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑤𝑖𝑛

], 𝑖 =

1,    2  ,    .    .    .   , 𝑛 .               

 (12) 

[3, 8]. 

For a single explanatory variable problem used 

in the diagonal weight matrix 𝑾𝒊, the kernel function 

𝐾 (
𝑥𝑖𝑗−𝑥1𝑗

𝑏𝑖𝑗
) is a simplified Gaussian kernel when one 

explanatory variable problem is used in the model 

matrix X, given as: 

𝑤𝑖1 =  𝐾 (
𝑥𝑖𝑗−𝑥1𝑗

𝑏𝑖𝑗
) = 𝑒

−(
𝑥𝑖𝑗−𝑥1𝑗

𝑏𝑖𝑗
)

2

    

    (13) 

In a situation where more than one explanatory variable 

is used in the model matrix X, the kernel weight 𝑤𝑖1, is 

a product kernel given as: 

𝑤𝑖1 = ∏𝑗=1
𝑘 𝐾 (

𝑥𝑖𝑗−𝑥1𝑗

𝑏𝑖𝑗
) ∑ ∏𝑗=1

𝑘 𝐾 (
𝑥𝑝𝑗−𝑥1𝑗

𝑏𝑝𝑗
)𝑛

𝑝=1⁄ , 𝑝 =

1,2, … , 𝑛, 𝑗 = 1,2, … , 𝑘,      (14) 

The values of 𝑖 in equations 13 and 14 are obtained in 

equations 17 – 20 [3, 8]. 

In RSM, the matrix comprising the vector of 

optimal bandwidths 𝑏11
∗ , 𝑏12, … , 𝑏𝑛𝑘

∗  is obtained from the 
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minimization of the Penalized Prediction Error Sum of 

Squares (𝑃𝑅𝐸𝑆𝑆∗∗):  

            Minimize 𝑃𝑅𝐸𝑆𝑆∗∗{𝑏11, 𝑏12, … , 𝑏𝑛𝑘} =

∑ (𝑦𝑖−�̂�𝑖,−𝑖
(𝐿𝐿𝑅)

)
2

𝑛
𝑖=1

   𝑛−𝑡𝑟𝑎𝑐𝑒(𝐻(𝐿𝐿𝑅)(𝝎))+(𝑛−𝑘−1)
𝑆𝑆𝐸𝑚𝑎𝑥−𝑆𝑆𝐸𝝎

𝑆𝑆𝐸𝑚𝑎𝑥

’     (15)       

For 𝑖 = 1 in equation (12), we have: 

 

𝑾𝟏 = [

𝑤11 0
0
⋮
0

𝑤12

⋮
0

⋯ 0
…
⋱
⋯

0
⋮

𝑤1𝑛

]

(𝑛×𝑛)

   

            (16) 

     𝑤11 =
∏𝑗=1

𝑘 𝐾(
𝑥1𝑗−𝑥1𝑗

𝑏𝑖𝑗
)

∑ ∏𝑗=1
𝑘 𝐾(

𝑥𝑝𝑗−𝑥1𝑗

𝑏𝑝𝑗
)𝑛

𝑝=1

,      𝑝 =

1,    2  ,    .    .    .   , 𝑛; 𝑗 = 1,  2,… , 𝑘.          

 (17) 

𝑤11 =
𝐴

[𝐴+𝐵+⋯+𝐶]
, 𝐴 =

𝑒
−(

𝑥11−𝑥11
𝑏11

)2

𝑒
−(

𝑥12−𝑥12
𝑏12

)2

… 𝑒
−(

𝑥1𝑘−𝑥1𝑘
𝑏1𝑘

)2

,𝐵 =

𝑒
−(

𝑥21−𝑥11
𝑏21

)
2

𝑒
−(

𝑥22−𝑥12
𝑏22

)
2

…𝑒
−(

𝑥2𝑘−𝑥1𝑘
𝑏2𝑘

)
2

 

and 𝐶 = 𝑒
−(

𝑥𝑛1−𝑥11
𝑏𝑛1

)
2

𝑒
−(

𝑥𝑛2−𝑥12
𝑏𝑛2

)
2

… 𝑒
−(

𝑥𝑛𝑘−𝑥1𝑘
𝑏𝑛𝑘

)2

 

𝑤12 =
∏𝑗=1

𝑘 𝐾(
𝑥2𝑗−𝑥1𝑗

𝑏𝑖𝑗
)

∑ ∏𝑗=1
𝑘 𝐾(

𝑥𝑝𝑗−𝑥1𝑗

𝑏𝑝𝑗
)𝑛

𝑝=1

,      𝑝 =

1,    2  ,    .    .    .   , 𝑛; 𝑗 = 1,  2,… , 𝑘.                  

 (18) 

𝑤12 =
𝐷

[𝐸+𝐷+⋯+𝐹]
,  𝐷 =

𝑒
−(

𝑥21−𝑥11
𝑏21

)2

𝑒
−(

𝑥22−𝑥12
𝑏22

)2

… 𝑒
−(

𝑥2𝑘−𝑥1𝑘
𝑏2𝑘

)2

,𝐸 =

𝑒
−(

𝑥11−𝑥11
𝑏11

)2

𝑒
−(

𝑥12−𝑥12
𝑏12

)2

… 𝑒
−(

𝑥1𝑘−𝑥1𝑘
𝑏1𝑘

)
2

 

and  𝐹 = 𝑒
−(

𝑥𝑛1−𝑥11
𝑏𝑛1

)
2

𝑒
−(

𝑥𝑛2−𝑥12
𝑏𝑛2

)
2

…𝑒
−(

𝑥𝑛𝑘−𝑥1𝑘
𝑏𝑛𝑘

)2

 

       ⋮ 

                    𝑤1𝑛 =
∏𝑗=1

𝑘 𝐾(
𝑥𝑛𝑗−𝑥1𝑗

𝑏𝑖𝑗
)

∑ ∏𝑗=1
𝑘 𝐾(

𝑥𝑝𝑗−𝑥1𝑗

𝑏𝑝𝑗
)𝑛

𝑝=1

 ,       𝑝 =

1,    2  ,    .    .    .   , 𝑛; 𝑗 = 1,  2,… , 𝑘.    (19)  

𝑤1𝑛 =
𝐺

[𝐽+𝐻+⋯+𝐺]
     

     

 (20) 

𝐺 = 𝑒
−(

𝑥𝑛1−𝑥11
𝑏𝑛1

)
2

𝑒
−(

𝑥𝑛2−𝑥12
𝑏𝑛2

)
2

…𝑒
−(

𝑥𝑛𝑘−𝑥1𝑘
𝑏𝑛𝑘

)
2

, 𝐻 =

𝑒
−(

𝑥21−𝑥11
𝑏21

)
2

𝑒
−(

𝑥22−𝑥12
𝑏22

)
2

…𝑒
−(

𝑥2𝑘−𝑥1𝑘
𝑏2𝑘

)
2

 

 

and 𝐽 = 𝑒
−(

𝑥11−𝑥11
𝑏11

)2

𝑒
−(

𝑥12−𝑥12
𝑏12

)2

… 𝑒
−(

𝑥1𝑘−𝑥1𝑘
𝑏1𝑘

)
2

 

 

equation (12) translates to   

𝑾𝒊 = 𝑑𝑖𝑎(𝑤𝑖1,  𝑤𝑖2,…, 𝑤𝑖𝑛)  for each 𝑖 =
1,    2  ,    .    .    .   , 𝑛 . 

�̂�(𝐿𝐿𝑅) = 𝑯(𝐿𝐿𝑅)𝒚,   

               

 (21) 

Equation (8) can be written in terms of hat matrix as: 

 𝑯(𝐿𝐿𝑅) =

[
 
 
 
 
  𝒙𝟏

′(𝐿𝐿𝑅)
(𝑿′(𝐿𝐿𝑅)𝑾𝟏𝑿

(𝐿𝐿𝑅))
−1

𝑿′(𝐿𝐿𝑅)𝑾𝟏

 𝒙𝟐
′(𝐿𝐿𝑅)

(𝑿′(𝐿𝐿𝑅)𝑾𝟐𝑿
(𝐿𝐿𝑅))

−1
𝑿′(𝐿𝐿𝑅)𝑾𝟐

⋮

 𝒙𝒏
′(𝐿𝐿𝑅)

(𝑿′(𝐿𝐿𝑅)𝑾𝒏𝑿
(𝐿𝐿𝑅))

−1
𝑿′(𝐿𝐿𝑅)𝑾𝒏]

 
 
 
 
 

            

    (22) 

 

where the 𝑛 × 𝑛 matrix, 𝑯(𝐿𝐿𝑅) is the LLR hat matrix. 

The drawback of LLR model is high bias in 

regions where there is curvature because the structure of 

model matrix of the LLR model lacks the quadratic 

terms [5, 9]. 

 

Experimental design 

In RSM, the number of factors is usually more than one. 

Hence, if the number of factors is too large, it may 

directly affect the response (Received signal strength) of 

interest, and since not all factors are desirable to be 

included in the experimental design for reason due to 

cost implication, it required the use of factor screening 

approach or two-level full factorial design to identify the 

variables with main effects [1, 8, 10].  

Choice of adequate levels to be studied for the 

explanatory variables is also important as it can affect 

model accuracy. The Experimental Design phase 

permits an appropriate design that can provide adequate 

and considerable estimation relationship between the 

response and one or more factors. Usually applied 

Design of Experiments (DOEs) in RSM include: 2𝑘 full 

factorial design, 3𝑘 full factorial design, and the Central 

Composite Design (CCD).   

In Table 1 gives the different coded levels for 

the three operating factors namely reaction time, 

methanol-to-oil ratio and concentration of catalyst.  
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Table 1:  Input process factors for P60C40 yield optimization [11]  

Operating Factors Symbol 

Coded 

Factors 

Coded Levels 

-1(Low) 0(Medium) +1(High) 

Reaction Time  m A 20 35 50 

Methanol-to-oil ratio Vol. %/Vol. % B 30 47.5 65 

Concentration of 

catalyst 

Wt. % C 0.5 1 1.5 

 

Table 2 represents the experimental run or the sample size of the factors and both the experimental yield and the 

predicted yield as given in [11]. 

 

Table 2: Experimental design for optimization of P60C40 biodiesel yield [11]  

Experimental 

Run 
Time (m) M: O (v/v %) 

Catalyst 

Concentration 

(w/w) 

Experimental 

Yield (%) 

Predicted Yield 

(%) 

1 20 47.5 1.5 91.43 91.34 

2 20 47.5 0.5 95.97 96.05 

3 35 30 1.5 88.34 88.19 

4 50 47.5 1.5 87.32 87.24 

5 35 65 1.5 86.8 87.13 

6 35 47.5 1 93.21 92.55 

7 35 47.5 1 91.84 92.55 

8 35 47.5 1 92.3 93.77 

9 20 30 1 93.53 90.19 

10 50 30 1 89.95 92.55 

11 35 47.5 1 93.01 96.41 

12 50 47.5 0.5 96.32 91.27 

13 50 65 1 91.51 91.27 

14 20 65 1 91.67 91.43 

15 35 30 0.5 95.02 94.70 

16 35 65 0.5 94.34 94.50 

17 35 47.5 1 92.39 92.55 
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Table 3:  Input process factors for P60C40 yield optimization  

Operating 

Factors 

Symbol Coded 

Factors 

Coded Levels 

(-𝜶) -1(Low) 0(Medium) +1(High) (+𝜶) 

Reaction Time  m A 5 20 35 50 65 

Methanol-to-oil 

ratio 

Vol. %/Vol. % B 12.5 30 47.5 65 82.5 

Concentration of 

catalyst 

Wt. % C 0.1 0.5 1 1.5 1.9 

 

Table 4 explains the addition of the axial point to the coded factors that can capture curvature and maintain rotatability 

in the data 𝛼 = ±√2𝑘4
 , where k= the number of factors utilized in the design. Hence, 𝛼 = ±1.628 [12]. 

 

Table 4: Experimental design for optimization of P60C40 biodiesel yield [11] 

Experimental 

Run 
Time (m) M: O (v/v %) 

Catalyst 

Concentration 

(w/w) 

Experimental 

Yield (%) 

Predicted Yield 

(%) 

1 -1 -1 -1 91.43 91.34 

2 1 -1 -1 95.97 96.05 

3 -1 1 -1 88.34 88.19 

4 1 1 -1 87.32 87.24 

5 -1 -1 1 86.8 87.13 

6 1 -1 1 93.21 92.55 

7 -1 1 1 91.84 92.55 

8 1 1 1 92.3 93.77 

9     -1.682 0 0 93.53 90.19 

10 1.682 0 0 89.95 92.55 

11 0 -1.882 0 93.01 96.41 

12 0 1.682 0 96.32 91.27 

13 0 0 -1.682 91.51 91.27 

14 0 0 1.682 91.67 91.43 

15 0 0 0 95.02 94.70 

16 0 0 0 94.34 94.50 

17 0 0 0 92.39 92.55 

 

The central composite design 

A Central Composite Design allows for the building of 

the second-order regression model in a given response 

that is frequently used for process optimization [12, 13]. 

The three types of CCD are based on the locations of the 

factorial and star points in the design space namely; 

Circumscribed CCD (CCCD), Faced-Centered CCD 

and the Inscribed CCD. 

 

The circumscribed central composite design 

The most common CCD utilized in RSM is the 

circumscribed CCD because it allows for the estimation 

of curvature and the values of star points maintain 

rotatability which in turn depends on the factorial point 

of the design [14]. The circumscribed CCD involves 

three types of trials namely; two levels (2𝑘) full factorial 
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designs, 2𝑘  axial (star) points which are located at 

distance 𝛼 = √2𝑘4
 from the center point and 𝑘𝑐 , kth 

central points [15].  The Circumscribed CCD can 

express geometrically as: 

Figure 1:  Circumscribed CCD (17 points, when k=3) 

with factorial design points (8 points), axial points (6 

points) and with at least kth central point (3 points).  

Sources: [1, 16] 

 

The CCCD is utilized because it is cost efficient, 

maintain rotatability and accommodates small number 

of experimental runs in the design. The mathematical 

expression for the CCCD is given as: 

𝐶𝐶𝐶𝐷 =  2𝑘 + 2𝑘 + 𝑘𝑐    

     (23)  

where 2𝑘 is the factorial portion, 2𝑘 is the axial or star 

points and 𝑘𝑐 is at least kth central points utilized in the 

design. In this design 𝑘 = 3 and 𝑘𝑐 = 3 which from 

equation (23) sum up to 17 experimental runs. 

Hereafter, circumscribed CCD shall be referred to as 

CCCD for easy reference. A CCCD has an advantage 

over 3𝑘 full factorial design because it reduces the 

number of experimental runs (e.g. 17points in CCCD as 

against 27 points in 3𝑘 design for k= 3). 

 

Data transformation using central composite design 

(CCD) to RSM Data 

The values of the explanatory variables are coded 

between 0 and 1. The data collected via a CCD is 

transformed by a mathematical relation: 

 𝑥𝑁𝐸𝑊 =
𝑀𝑖𝑛(𝑥𝑂𝐿𝐷)−𝑥0

(𝑀𝑖𝑛(𝑥𝑂𝐿𝐷)−𝑀𝑎𝑥(𝑥𝑂𝐿𝐷))
  

     (24)  

 

where 𝑥𝑁𝐸𝑊  is the transformed value, 𝑥0 is the target 

value that needed to be transformed in the vector 

containing the old coded value,  represented as 𝑥𝑂𝐿𝐷, 

Min (𝑥𝑂𝐿𝐷) and 𝑀𝑎𝑥(𝑥𝑂𝐿𝐷) are the minimum and 

maximum values in the vector 𝑥𝑂𝐿𝐷  respectively, [8]. 

The natural or coded variables in Table 5 can 

be transformed to explanatory variables in Table 6 using 

Equation (24). Target points needed to be transformed 

from the first row for location 1 under the coded 

variables are given below: 

Target points 𝑥0 : − 1 , −1, −1, ; 𝑀𝑖𝑛(𝑥𝑂𝐿𝐷) : −
1.682 , −1.682, −1.682, ;  𝑀𝑎𝑥(𝑥𝑂𝐿𝐷): 1.682, 1.682, 1.682  

𝑥𝑁𝐸𝑊 =
𝑀𝑖𝑛(𝑥𝑂𝐿𝐷) − 𝑥0

(𝑀𝑖𝑛(𝑥𝑂𝐿𝐷) − 𝑀𝑎𝑥(𝑥𝑂𝐿𝐷))
 

𝐸𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑜𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑥1 ∶  𝑥11

=
−1.682 − (−1)

((−1.682) − (1.682))
= 0.2030 

𝐸𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑜𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑥2 ∶  𝑥12

=
−1.682 − (−1)

((−1.682) − (1.682))
= 0.2030 

𝐸𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑜𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑥3 ∶  𝑥13

=
−1.682 − (−1)

((−1.682) − (1.682))
= 0.2030 
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Table 5: Experimental design for optimization of P60C40 biodiesel yield  

Experimental 

Run 

Time (m) 

 𝒙𝟏 

M: O (v/v %) 

𝒙𝟐 

Catalyst 

Concentration 

(w/w) 𝒙𝟑 

Experimental 

Yield (%) 

Predicted Yield 

(%) 

1 0.2030 0.2030 0.2030 91.43 91.34 

2 0.7970 0.2030 0.2030 95.97 96.05 

3 0.2030 0.7970 0.2030 88.34 88.19 

4 0.7970 0.7970 0.2030 87.32 87.24 

5 0.2030 0.2030 0.7970 86.8 87.13 

6 0.7970 0.2030 0.7970 93.21 92.55 

7 0.2030 0.7970 0.7970 91.84 92.55 

8 0.7970 0.7970 0.7970 92.3 93.77 

9 0.0000 0.5000 0.5000 93.53 90.19 

10 1.0000 0.5000 0.5000 89.95 92.55 

11 0.5000 0.0000 0.5000 93.01 96.41 

12 0.5000 1.0000 0.5000 96.32 91.27 

13 0.5000 0.5000 0.0000 91.51 91.27 

14 0.5000 0.5000 1.0000 91.67 91.43 

15 0.5000 0.5000 0.5000 95.02 94.70 

16 0.5000 0.5000 0.5000 94.34 94.50 

17 0.5000 0.5000 0.5000 92.39 92.55 

 

RESULTS AND DISCUSSION 

 

The performance of the adaptive local linear regression model, the 𝐿𝐿𝑅𝐴𝐵  over OLS, second-order regression model 

and 𝐴𝑁𝑁 of as given in [11] was investigated in terms of maximum biodiesel yield, the goodness-of-fit statistics and 

residual error for RSM data. 

Table 6: The adaptive bandwidths for the three factors and the 𝐿𝐿𝑅𝐴𝐵residual 

Experimental Run Time (m) 

 𝒙𝟏, 𝒃𝟏 

M: O (v/v %) 

𝒙𝟐 , 𝒃𝟐 

Catalyst 

Concentration 

(w/w) 𝒙𝟑 , 𝒃𝟑 

Residual for          

𝑶𝑳𝑺 

Residual for 

𝑳𝑳𝑹𝑨𝑩 

1 0.2522 0.3200 0.2847    -0.8408 -0.0018 

2 0.1334 0.3200 0.2847     1.0208 0.0121 

3 0.2522 0.1686 0.2847    -2.5426 -0.0245 

4 0.1334 0.1686 0.2847    -0.4861 -0.0085 

5 0.2522 0.3200 0.1599    -0.8647 -0.0289 

6 0.1334 0.3200 0.1599     1.1919 0.0020 

7 0.2522 0.1686 0.1599    -2.3716 -0.0034 
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8 0.1334 0.1686 0.1599    -0.5100 0.0100 

9 0.3014 0.2383 0.2178     3.2806 0.0281 

10 0.1014 0.2383 0.2178    -1.3742 0.0001 

11 0.1881 0.3829 0.2178    -0.9528 0.0076 

12 0.1881 0.1278 0.2178     2.8592 0.0130 

13 0.1881 0.2383 0.3356     1.0406 0.0026 

14 0.1881 0.2383 0.1254     0.8658 0.0018 

15 0.1881 0.2383 0.2178     0.9980 1.1090 

16 0.1881 0.2383 0.2178     0.3180 0.4290 

17 0.1881 0.2383 0.2178    -1.6320 -1.5210 

 

 

Table 7: Experimental design for optimization of P60C40 biodiesel yield  

Experimental 

Run 

Time 

(m) 

 𝒙𝟏 

M: O 

(v/v %) 

𝒙𝟐 

Catalyst 

Concentration 

(w/w) 𝒙𝟑 

Experimental 

Yield (%) 

Predicted 

Yield (%) 

See [11] 

Predicted 

OLS 

Yield (%) 

 

Predicted 

Yield (%) 

𝑳𝑳𝑹𝑨𝑩 

1 0.2030 0.2030 0.2030 91.43 91.34 92.2708 91.4318 

2 0.7970 0.2030 0.2030 95.97 96.05 94.9492 95.9579 

3 0.2030 0.7970 0.2030 88.34 88.19 90.8826 88.3645 

4 0.7970 0.7970 0.2030 87.32 87.24 87.8061 87.3285 

5 0.2030 0.2030 0.7970 86.8 87.13 87.6647 86.8289 

6 0.7970 0.2030 0.7970 93.21 92.55 92.0181 93.2080 

7 0.2030 0.7970 0.7970 91.84 92.55 94.2116 91.8434 

8 0.7970 0.7970 0.7970 92.3 93.77 92.8100 92.2900 

9 0.0000 0.5000 0.5000 93.53 90.19 90.2494 93.5019 

10 1.0000 0.5000 0.5000 89.95 92.55 91.3242 89.9499 

11 0.5000 0.0000 0.5000 93.01 96.41 93.9628 93.0024 

12 0.5000 1.0000 0.5000 96.32 91.27 93.4608 96.3070 

13 0.5000 0.5000 0.0000 91.51 91.27 90.4694 91.5074 

14 0.5000 0.5000 1.0000 91.67 91.43 90.8042 91.6682 

15 0.5000 0.5000 0.5000 95.02 94.70 94.0220 93.9110 

16 0.5000 0.5000 0.5000 94.34 94.50 94.0220 93.9110 

17 0.5000 0.5000 0.5000 92.39 92.55 94.0220 93.9110 
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Table 8: Maximum experimental yield as compared with maximum yield of OLS, second-order regression model and 

ANN of [11] and 𝐿𝐿𝑅𝐴𝐵 . 

S/N Model Result Outcome 

(%) 
Time (m) 

 𝒙𝟏 

M: O (v/v %) 

𝒙𝟐 

Catalyst 

Concentration 

(w/w) 𝒙𝟑 

1 Maximum 

Experimental yield 

96.32 0.5000 (50) 1.0000 (47.5) 0.5000 (0.5) 

2 Maximum OLS yield 94.95 0.7970 (20) 0.2030 (47.5) 0.2030 (0.5) 

3 Maximum RSM     

See [11] 

96.41 0.5000 (35) 0.0000 (47.5) 0.5000 (1.00) 

4 Maximum ANN  

See [11] 

96.67 - - - 

5 Maximum  𝐿𝐿𝑅𝐴𝐵  yield 96.31 0.5000 (50) 1.0000 (47.5) 0.5000 (0.5) 

 

Table 9: Comparison of the goodness-of-fit statistics for the three model OLS, Second-order linear regression of [11] 

and the 𝐿𝐿𝑅𝐴𝐵  

 

 

The results obtained from Table 9, clearly shows that 

𝐿𝐿𝑅𝐴𝐵  outperformed the OLS, Second-order linear 

regression model and the ANN result in Table 8 via [11] 

in terms of goodness – of – fit statistics such as  

PRESS**, PRESS, SSE, MSE, R2 and R2Adj and except 

for PRESS* that OLS turns out to be than other model. 

Hence, the proposed as given in Tables 8 and 9, the 

proposed 𝐿𝐿𝑅𝐴𝐵  in terms of maximum biodiesel yield is 

96.31% with optimum conditions for the respective 

factors (50m, 47.5v/v% and 0.5w/w) which is 

approximately equal to the experimental biodiesel yield 

of 96.32% with optimum conditions for the respective 

factors (50m, 47.5v/v% and 0.5w/w) as compared to 

OLS with maximum biodiesel yield of 94.95% with 

optimum conditions for the respective factors (20m, 

47.5v/v% and 0.5w/w), Second-order linear regression 

model of [11] with maximum yield of 96.41% and with 

optimum conditions for the respective factors (35m,  

 

47.5v/v% and 1.00w/w) and ANN with maximum yield 

of 96.67% signifying that 𝐿𝐿𝑅𝐴𝐵  captures more local 

variability and curvature in the data to any other existing 

models.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Models 𝑏∗ 𝐷𝐹𝑒𝑟𝑟𝑜𝑟  Max. 

Yield 

% 

𝑀𝑆𝐸 𝑆𝑆𝐸 𝑅2% 𝑅𝑎𝑑𝑗
2 % 𝑃𝑅𝐸𝑆𝑆 𝑃𝑅𝐸𝑆𝑆∗ 𝑃𝑅𝐸𝑆𝑆∗∗ 

𝑂𝐿𝑆 - 7.0000 94.95 6.2613 43.8292 63.8592 17.3925 312.8207 44.6887 44.6887 

See [11] - 
9.0000 96.41 13.28 119.52 95.6000 94.97 - - - 

𝐿𝐿𝑅𝐴𝐵  
* 2.0443 96.31 1.8247 3.7302 96.9200 75.9300 287.1014 140.4408 19.6130 
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Figure 2: Residual plot for the three regression models OLS, [11] and 𝐿𝐿𝑅𝐴𝐵   

 

Figure 3: Experimental residual line versus three regression models OLS, [11] and (𝐿𝐿𝑅𝐴𝐵) 

 

From Figures 2 and 3, 𝐿𝐿𝑅𝐴𝐵  provides the smallest residual error over OLS, Second-order linear regression model 

and the ANN as given in [11] which also justifies the result of the goodness-of-fit statistics obtained as given above. 

Obviously, the 𝐿𝐿𝑅𝐴𝐵  performs better as compared with other models as presented.  

 

CONCLUSION 

 

In the estimation of maximum biodiesel yield, a 

proportion of P60C40) was collected for the production 

of biodiesel through ultrasound assisted trans-

esterification process see [11]. The choice of statistical 

design to be utilized was prompted by the number of 

experimental runs for which the circumscribed central 

composite design was preferred over other design 

because it is cost efficient, captures local variability and 

maintain rotatability in the data and thereafter the data 

were coded to lie between zero and one for RSM data. 

On the other hand, the 𝐿𝐿𝑅𝐴𝐵  model is flexible because 

it is not restricted to user specified form and as such 

provides better results in terms of goodness-of-fit 

statistics and with the least residual error. Hence, the 

𝐿𝐿𝑅𝐴𝐵  in terms of maximum biodiesel yield is 96.31% 

which is approximately equal to the experimental 

biodiesel yield of 96.32% with an absolute difference of 

0.01% as compared to OLS with maximum biodiesel 

yield of 94.95% (1.37%), Second-order linear regression 

model as given in [11] with maximum yield of 96.41% 

(0.09%) and ANN with maximum yield of 96.67% 

(0.35%) signifying that 𝐿𝐿𝑅𝐴𝐵  captures more local 

variability and curvature in the data to any other models.  
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