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ABSTRACT 

Response Surface Methodology (RSM) is a sequential statistical approach employed by engineers and industrial 

statistician for empirical model building where the processes and products are optimized. In RSM, the parametric 

regression models are frequently used but lack credibility due to model misspecification and as such affects the 

process mean and variance and ultimately, the estimated response is misscalulated. Although, the nonparametric 

regression models are flexible, but lack recognition in RSM due to the idiosyncracies of RSM data; such as 

dimensionality problem, sparseness of RSM data and small sample size. In the literature, semiparametric 

regression models are considered the most suitable methods in RSM because it combines attributes of the 

parametric and nonparametric regression models in a fashionable manner. In this paper, we give a comparative 

analysis of the OLS and three semiparametric regression models that utilizes two existing locally adaptive 

bandwidths from the literature were applied to obtain a  novel blend of the semiparametric regression models used 

to smooth the two data for the application problems and the results tend to improve the goodness of fit statistics, 

with minimum residual plots for the responses and optimization of processes and products.  

Keywords: Dimensionality problem, ordinary least squares (OLS), parametric regression model, nonparametric 

regression model, sequential statistical approach 
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INTRODUCTION 

 

Response Surface Methodology (RSM) is a sequential 

statistical tool employed by engineers and statistician 

for empirical model building, such that the response 

variable is optimized [1]. RSM consists of three core 

stages namely, experimental design stage, modeling 

stage and the optimization stage of the fitted 

regression models where the settings of the 

explanatory variables optimize the response(s).  

MATERIALS AND METHODS 

The parametric regression models are superior if the 

user can specify a parametric form for the data, 

otherwise misspecified.  The nonparametric 

regression model is not restricted to a user specified 

form as in the parametric counterpart. In spite of its 

flexibility, nonparametric regression models are 

challenged in a study such as RSM due to 

idiosyncracies of RSM data namely; 

• Sparseness of RSM data 

• Cost efficient design (small sample sizes) 

• The study utilizes more than one explanatory 

variable (a term referred to as curse of 

dimensionality). 

 

The parametric regression model (OLS) 

Consider the parametric regression model: 

   

𝒚 = 𝑿𝜷 +  𝜺,  

    

    (1) 

Where 𝒚 =

[
 
 
 
 
 
𝑦1

𝑦2

.

.

.
𝑦𝑛]

 
 
 
 
 

(𝑛×1)

 is the vector of response, 

 𝑿 = [

1 𝑥11 𝑥12 ⋯ 𝑥1𝑘

1 𝑥21 𝑥22 ⋯ 𝑥2𝑘

⋮ ⋮ ⋮ ⋱ ⋮
1 𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑘

]

(𝑛×(𝑘+1))

is the model 

matrix,  

where 𝑿 = 𝑿(𝑶𝑳𝑺), 𝜷 is the unknown parameter vector 

and 𝜺 is the vector of error term. 

The estimated responses for the 𝑖𝑡ℎ data points are: 

�̂�(𝑂𝐿𝑆) =  (𝑿′(𝑂𝐿𝑆)𝑿(𝑂𝐿𝑆))
−1

𝑿′(𝑂𝐿𝑆)𝒚,     

�̂�𝑖
(𝑂𝐿𝑆)

=

𝒙𝒊
′(𝑂𝐿𝑆)

(𝑿′(𝑂𝐿𝑆)𝑿(𝑂𝐿𝑆))
−1

𝑿′(𝑂𝐿𝑆)𝒚,      𝑖 = 1,2, … , 𝑛.  

  (2) 

In matrix form, equation (2) is expressed as:  

 �̂�(𝑂𝐿𝑆) = 𝑯(𝑂𝐿𝑆)𝒚 =

[
 
 
 
 𝒉𝟏

(𝑂𝐿𝑆)

𝒉𝟐
(𝑂𝐿𝑆)

⋮

𝒉𝒏
(𝑂𝐿𝑆)

]
 
 
 
 

𝒚,  (3) 

where the 1 × 𝑛 vector 𝒉𝒊
(𝑂𝐿𝑆)

 is the 𝑖𝑡ℎ row of the 

𝑛 × 𝑛 OLS Hat matrix. 
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The disadvantage of the parametric regression model 

is that if misspecified, the estimates are usually 

biased [2, 3].  

 

The Local Linear Regression model (LLR) 

Using the weighted least squares theory [4], the LLR 

estimator �̂�𝑖
(𝐿𝐿𝑅)

is given as: 

  �̂�𝑖
(𝐿𝐿𝑅)

=

𝒙𝒊
′(𝐿𝐿𝑅)

(𝑿′(𝐿𝐿𝑅)𝑾𝒊𝑿
(𝐿𝐿𝑅))

−𝟏
𝑿′(𝐿𝐿𝑅)𝑾𝒊𝒚,  𝑖 =

1,2, … , 𝑛  (4) 

where 𝑿(𝐿𝐿𝑅)is the LLR model matrix that depends 

solely on the number of explanatory variables utilized 

in the experiment, 𝑾𝒊 = 𝑾𝑹𝒂𝒘 is the diagonal matrix 

of kernel (Gaussian) weight used in the  estimation of 

the 𝑖𝑡ℎ response and 𝒙𝒊
′(𝐿𝐿𝑅)

is the ith row of the LLR 

model matrix. 

In terms of locations, the LLR estimator is expressed 

as: 

�̂�𝒊
(𝑳𝑳𝑹)

= 𝒉𝒊
′(𝐿𝐿𝑅)

𝒚,   𝑖 =

1,  2 ,  … ,  𝑛   

    (5) 

The shortcoming of the LLR model is that it suffers 

high bias in region where the data exhibit curvature [ 

5, 6].   

 

Bandwidths for nonparametric and 

semiparametric regression models 

The choice of bandwidths for nonparametric and 

semiparametric regression models is a critical 

criterion and challenging in regression analysis [7, 8]. 

Bandwidth selection was designed to minimize bias 

and variance of the estimate [6]. 

A bandwidth 𝑏, is said to be fixed if it’s value is 

constant for all the locations in a given regression 

method, else it is referred to as locally adaptive 

bandwidths [9]. 

Hence, the kernel function, 𝐾(. ) employed in 

RSM is the simplified Gaussian kernel given in [10] 

as: 

𝐾 (
𝑥𝑖−𝑥0

𝑏
) = 𝐾 (

𝑥0−𝑥𝑖

𝑏
) =  𝑒−(

𝑥𝑖−𝑥0
𝑏

)2 , 𝑖 =

1,   2,    .    .    .   ,   𝑛. (6) 

where the kernel weights 𝑤𝑖0 in the kernel weight 

matrix is given as: 

𝑤𝑖0 =  
𝐾(

𝑥𝑖−𝑥𝑜
𝑏

)

∑ 𝐾(
𝑥𝑗−𝑥𝑜

𝑏
)𝑛

𝑗=1

,    𝑖 = 1,    2  ,    .    .    .   , 𝑛 .

 (7)  

According to [11], 𝐾 (
𝑥𝑖−𝑥0

𝑏
) in Equation (7) 

is referred to as kernel function which regulates the 

shape of the kernel weights (e.g. Gaussian kernel), 𝑥0 

is a dummy known as target point, 𝑏 is the bandwidth. 

A situation where more than one explanatory variable 

are used in the model matrix 𝑿(𝐿𝐿𝑅), the kernel 

weight 𝑤𝑖0 is a product from simplified Gaussian 

kernel given as: 

𝑤𝑖0 = ∏𝑗=1
𝑘 𝐾 (

𝑥𝑖𝑗−𝑥0

𝑏
) ∑ [ ∏𝑗=1

𝑘 𝐾 (
𝑥𝑝𝑗−𝑥0

𝑏
)𝑛

𝑝=1⁄ ],   𝑖 =

1,    .    .    .  ,  𝑛 .    (8) 

[4, 12].  

For data originated from RSM, the vector of optimal 

bandwidths Ω = [𝑏1
∗,   𝑏1

∗, … , 𝑏𝑛
∗ ] is obtained based on 

the minimization of the Penalized Prediction Error 

Sum of Squares (𝑃𝑅𝐸𝑆𝑆∗∗) [10]. 

The 𝑃𝑅𝐸𝑆𝑆∗∗ criterion for selecting the bandwidths is 

given as: 

 𝑃𝑅𝐸𝑆𝑆∗∗(Ω) =  
∑ (𝑦𝑖−�̂�𝑖,−𝑖(.))

2𝑛
𝑖=1

   𝑛−𝑡𝑟𝑎𝑐𝑒(𝐻(.)(Ω))+(𝑛−𝑘−1)
𝑆𝑆𝐸𝑚𝑎𝑥−𝑆𝑆𝐸Ω

𝑆𝑆𝐸𝑚𝑎𝑥

’           (9) 

where 𝑆𝑆𝐸𝑚𝑎𝑥 is the maximum Sum of Squared 

Errors obtained as the 𝑏1, 𝑏2, … , 𝑏𝑛 approaches 

infinity, 𝑆𝑆𝐸Ω is the sum of squared errors associated 

with a set of bandwidths 𝑏1, 𝑏2, … , 𝑏𝑛, 𝑡𝑟(𝐻(.)Ω) is the 

trace of the Hat matrix and �̂�𝑖,−𝑖 is the leave-one-out 

cross-validation estimated value of 𝑦𝑖  with the 𝑖𝑡ℎ 

observation left out [10, 12].  

Semiparametric regression models 

The semiparametric regression models combines 

estimates of both parametric and nonparametric 

regression models either to the raw (observed) data or 

to the residuals via the mixing parameters, 𝜆 [7, 13]. 

Semiparametric regression models in recent times 

have received great attention due to its flexibility and 

wide range of applications to discipline such as 

Engineering, Pharmacology, Ecominomis and 

Industries [14].  

 

Model Robust Regression 1 (MRR1) 

An operative and simple model that discourses the 

drawbacks inherent in both parametric and 

nonparametric regression models is the use of one 

semiparametric regression model, model robust 

regression 1 (MRR1) that combines estimate of 

parametric and nonparametric regression models, both 

to the observed data  in the most adequate proportion  

in a convex combination via the mixing parameter, 

𝜆[15].  

The goal of MRR1 is to offer a smooth 

estimation of the mean response that can capture 

important patterns or trends in the data, in that way 

reducing bias while at the same time reducing 

variance [13]. 

The mathematical expression for the MRR1 as given 

in [16], and [17] as: 

 �̂�(𝑀𝑅𝑅1) =  𝜆�̂�(𝐿𝐿𝑅) + (1 − 𝜆)�̂�(𝑂𝐿𝑆)

                    

 (10) 



 
Nigerian Journal of Scientific Research, 21(1): 2022; January–June; journal.abu.edu.ng; ISSN-0794-0378   280 

 

where the parameter 𝜆 is the mixing parameter with an 

interval [0, 1]. The purpose of 𝜆 is to combine 

estimates of parametric and nonparametric regression 

models in more efficient manner, such that as 𝜆 

increases from zero to one, model misspecification 

also increases for the data. On the other-hand, when 

𝜆 = 0, MRR1 is purely estimates of OLS, whereas, 

when 𝜆 = 1, MRR1 is estimates of LLR.  

The optimal value 𝜆∗ of 𝜆 is selected similar 

to bandwidth, based on the minimization of the 

𝑃𝑅𝐸𝑆𝑆∗∗ criterion: 

𝑃𝑅𝐸𝑆𝑆∗∗(Ω, 𝜆) =

∑ (𝑦𝑖−�̂�𝑖,−𝑖
(.)

(Ω,𝜆))
2

𝑛
𝑖=1

𝑛−𝑡𝑟𝑎𝑐𝑒(𝐻(.)(Ω,𝜆))+(𝑛−𝑘−1)
𝑆𝑆𝐸𝑚𝑎𝑥−𝑆𝑆𝐸Ω

𝑆𝑆𝐸𝑚𝑎𝑥

,                        

(11) 

 

where Ω=[𝑏1𝑗
∗ ,  𝑏2𝑗

∗ , … , 𝑏𝑛𝑗
∗ ] is the vector of optimal 

bandwidths, 𝑆𝑆𝐸𝛀 is the Sum of Squared Errors 

associated with the set of the optimal 

bandwidths,  [𝑏1𝑗
∗ ,  𝑏2𝑗

∗ , … , 𝑏𝑛𝑗
∗ ], 𝑡𝑟𝑎𝑐𝑒 (𝐻(.)(Ω, 𝜆)) is 

the trace of the Hat matrix, and �̂�𝑖,−𝑖
(.) (Ω, 𝜆) is the leave-

one-out cross-validation estimate of 𝑦𝑖  [10, 12]. 

The MRR1 suffers from the problem related with 

convex combination [4, 12]. 

 

Model Robust Regression 2 (MRR2)  

MRR2 combines estimates of parametric regression 

model to the raw data, while the aspect of  

nonparametric regression model uses the LLR Hat 

matrix to fit the residuals from the estimates of 

parametric regression model via a mixing parameter, 

𝜆. In this study, the estimate of the parametric 

regression model  is the use of  OLS. Nevertheless, 

other  parametric and  nonparametric regression 

models could be exploited in a study such as RSM [4, 

18]. 

 

The MRR2 was developed by [12] and is expressed 

as:  

�̂�(𝑀𝑅𝑅2) =  �̂�(𝑂𝐿𝑆) +  𝜆�̂�(𝐿𝐿𝑅), 

�̂�(𝐿𝐿𝑅) = 𝑯𝒓
(𝐿𝐿𝑅)

𝒓 (12)  

𝒓 = 𝒚 − 𝒚𝑂𝐿𝑆 is the vector of residuals that represents 

the structure in the data not captured by the user 

specified parametric regression model. The vector of 

residuals, 𝒓 is used to fit the LLR Hat matrix, 𝑯𝒓
(𝐿𝐿𝑅)

𝒓  
resulting to vector of smoothed or fitted residuals, 

�̂�(𝐿𝐿𝑅). The role of 𝜆 is such that if the parametric fit is 

adequate, then 𝜆 = 0, otherwise estimates of 

nonparametric fit is added back to the parametric fit 

via 𝜆  in the interval (0 1] to improve the estimates of 

MRR2. Also, the choice of 𝜆 is selected  through the 

minimization of 𝑃𝑅𝐸𝑆𝑆∗∗ criterion [15]. 

The MRR2 does not fully profit from the flexibility 

LLR can offer, since only OLS residuals is utilized in 

its fitting process [18]. 

 

 

Adaptive bandwidths (AB) 

According to [19] locally adaptive bandwidths:  

𝑏𝑖 =
𝑏∗𝑵(𝑪[∑ 𝑦𝑗]

𝑛
𝑗=1 −𝑦𝑖)

(𝑪𝑛−1)∑ 𝑦𝑗
𝑛
𝑗=1

,             𝑖 = 1,2, … , 𝑛

   (13) 

where 𝑏∗ is a fixed optimal bandwidth, 𝑦𝑖 ,  𝑖 =
1,2, … , 𝑛, could be taken as any statistics that mirrors 

the insufficiencies in the OLS estimates of the 

responses, 𝑇 =  ∑ 𝑦𝑗
𝑛
𝑗=1 , 𝑁 > 0, and 𝐶 ≥ 0, are 

parameters introduced to address the problem of 

clustering within the interval [0, 1]. The optimal 

chosen tuning parameters of 𝑁 and 𝐶 are hereafter 

refers to as 𝑁∗and  𝐶∗ respectively. 

Locally adaptive bandwidths (PAB) 

According to [20] presented data-driven locally 

adaptive bandwidths:  

 

𝑏𝑖𝑗 = 𝑇1𝑗(
1

2
−

𝑥𝑖𝑗

𝑇2𝑗
)2,   𝑖 = 1,2,  … ,  𝑛; 𝑗 =

1,2, … , 𝑘   (14) 

where, 0 < 𝑏𝑖𝑗 ≤ 1, ,    𝑇1𝑗 > 0,  𝑇2𝑗 > 0.  

The 𝑏∗
𝑖𝑗  of the locally adaptive optimal bandwidths 

from Equation (14) is obtained at an optimally 

selected values of 𝑇1𝑗, 𝑇2𝑗, (hereafter referred to as 𝑇1𝑗
∗  

and 𝑇2𝑗
∗ , respectively), 𝑗 = 1,2, … , 𝑘, based on the 

minimization of the 𝑃𝑅𝐸𝑆𝑆∗∗ criterion in Equation 

(9).  

where 𝑏𝑖𝑗 = 𝑏, is called a fixed bandwidth, otherwise 

𝑏𝑖𝑗 , 𝑖 = 1,2,  … ,  𝑛; 𝑗 = 1,2, … , 𝑘 are locally adaptive 

bandwidths.  

The locally adaptive bandwidths of 

Equations (13) and (14)  were applied to the two 

semiparametric regression models of  Equations (11) 

and (12) to obtain a  novel blend of semiparametric 

regression model used to smooth the two data for the 

application problems. 

RESULTS AND DISCUSSION 

In this section, we shall apply the OLS and the two 

semiparametric regression models utilizing the two 

locally adaptive bandwidths selector to adequately 

smooth the two RSM data  and thereafter discusses the 

results and give their respective statistical 

significance.  

Application I (single response chemical process 

data) 

The problem  of the study as given in [4, 21] was to 

relate chemical yield (y) to temperature (𝑥1) and time 

(𝑥2) with the intention to maximize the chemical 

yield. The data is obtained using the Central 

Composite Design is given in Table 1.  
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Table 1:  Single Response Chemical Process Data 

generated from the CCD 

𝒊    𝒙𝟏     𝒙𝟐    𝒚 

                 1 -1 -1 88.55 

                 2 1 -1 85.80 

                 3 -1 1 86.29 

                 4 1 1 80.44 

                 5 -1.414 0 85.50 

                 6 1.414 0 85.39 

                 7 0 -1.414 86.22 

                 8 0 1.414 85.70 

                 9 0 0 90.21 

                10 0 0 90.85 

                11 0 0 91.31 

Source: [4, 21] 

Data transformation using central composite 

design (CCD) 

Following nonparametric regression procedures in 

RSM, the values of the explanatory variables are 

coded between 0 and 1. The data collected via a CCD 

is transformed by a mathematical relation: 

 𝑥𝑁𝐸𝑊 =
𝑀𝑖𝑛(𝑥𝑂𝐿𝐷)−𝑥0

(𝑀𝑖𝑛(𝑥𝑂𝐿𝐷)−𝑀𝑎𝑥(𝑥𝑂𝐿𝐷))
 

     

  (15)  

where 𝑥𝑁𝐸𝑊  is the transformed value, 𝑥0 is the target 

value that needed to be transformed in the vector 

containing the old coded value, represented as 𝑥𝑂𝐿𝐷 , 

Min (𝑥𝑂𝐿𝐷) and 𝑀𝑎𝑥(𝑥𝑂𝐿𝐷) are the minimum and 

maximum values in the vector 𝑥𝑂𝐿𝐷  respectively, [22]. 

The natural or coded variables in Table 1 can be 

transformed to explanatory variables in Table 2 using 

Equation (15)  

Target points needed to be transformed for location 2 

under the coded variables are given below: 

Target points 𝑥0: 1 , −1; 𝑀𝑖𝑛(𝑥𝑂𝐿𝐷) : −
1.414 , −1.414;  𝑀𝑎𝑥(𝑥𝑂𝐿𝐷): 1.414, 1.414 

𝑥𝑁𝐸𝑊 =
𝑀𝑖𝑛(𝑥𝑂𝐿𝐷) − 𝑥0

(𝑀𝑖𝑛(𝑥𝑂𝐿𝐷) − 𝑀𝑎𝑥(𝑥𝑂𝐿𝐷))
 

𝐸𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑜𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑥1 ∶  𝑥21

=
−1.414 − (1)

((−1.414) − (1.414))
= 0.8536 

𝐸𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑜𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑥2 ∶  𝑥22

=
−1.414 − (−1)

((−1.414) − (1.414))
= 0.1464 

Table 2:  Single Response Chemical Process Data  

𝒊    𝒙𝟏     𝒙𝟐    𝒚 

                 

1 

0.1464 0.1464 88.55 

                 

2 

0.8536 0.1464 85.80 

                 

3 

0.1464 0.8536 86.29 

                 

4 

0.8536 0.8536 80.44 

                 

5 

0.0000 0.5000 85.50 

                 

6 

1.0000 0.5000 85.39 

                 

7 

0.5000 0.0000 86.22 

                 

8 

0.5000 1.0000 85.70 

                 

9 

0.5000 0.5000 90.21 

                

10 

0.5000 0.5000 90.85 

                

11 

0.5000 0.5000 91.31 

 

A second-order model was specified for the 

parametric technique [4]. The 𝑅𝑎𝑑𝑗
2  from the OLS 

method using the full second-order model gives 

67.77%. Here, the interest is to determine if the 

amount of variability not explained by the specified 

model can be reduced by the application of the LLR 

method. 

 

Table 3:  Locally Adaptive Optimal Bandwidths (PAB) for 𝑀𝑅𝑅1𝑃𝐴𝐵  in the Single Response Chemical   

               Process Data 

𝑖 

𝑴𝑹𝑹𝟏𝑷𝑨𝑩 

   

𝑥1 

𝑇11
∗ = 1.3151000000000000 

𝑇21
∗ = 2.9740000000000000 

𝑥2 

𝑇12
∗ = 1.4134000000000000 

𝑇22
∗ = 1.0412000000000000 

𝑏𝑖1 𝑏𝑖2 

1 0.2672 0.1826 

2 0.0597 0.1826 

3 0.2672 0.1446 

4 0.0597 0.1446 
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5 0.3288 0.0006 

6 0.0353 0.0006 

7 0.1448 0.3534 

8 0.1448 0.2996 

9 0.1448 0.0006 

10 0.1448 0.0006 

11 0.1448 0.0006 

 

Table 3, represents varying tuning parameters for 𝑀𝑅𝑅1𝑃𝐴𝐵 via the locally adaptive bandwidths for the single 

response chemical process problem. 

Table 4:  Locally Adaptive Optimal Bandwidths (PAB) for 𝑀𝑅𝑅2𝑃𝐴𝐵  in the Single Response  

                Chemical Process Data 

𝑖 

𝑴𝑹𝑹𝟐𝑷𝑨𝑩 

   

𝑥1 𝑥2 

𝑏𝑖1 

𝑇11
∗ = 0.4386583586285935 

𝑇21
∗ = 0.4989813147061812 

𝑏𝑖2 

𝑇12
∗ = 1.4145296569455679 

𝑇22
∗ = 2.0399967966514610 

1 0.0187 0.2594 

2 0.6430 0.2594 

3 0.0187 0.0094 

4 0.6430 0.0094 

5 0.1097 0.0919 

6 0.9924 0.0919 

7 0.1106 0.3536 

8 0.1106 0.0001 

9 0.1106 0.0919 

10 0.1106 0.0919 

11 0.1106 0.0919 

 

Table 4., represents varying tuning parameters for 𝑀𝑅𝑅2𝑃𝐴𝐵  via the locally adaptive bandwidths (PAB) for the 

single response chemical process problem. 

The fixed mixing parameters for the models, 𝑀𝑅𝑅1𝑃𝐴𝐵 , 𝑀𝑅𝑅2𝑃𝐴𝐵, and the 𝑀𝑅𝑅2𝐴𝐵 as obtained via genetic 

algorithm tool in Matlab are presented in Table 5.  

 

Table 5:  Mixing Parameters of different models for Single Response Chemical Process Data 

Response Model 𝝀 

𝑦 

𝑂𝐿𝑆 NOT APPLICABLE 

𝑀𝑅𝑅1𝑃𝐴𝐵 0.9588225842457119 

𝑀𝑅𝑅2𝑃𝐴𝐵 1.0000000000000000 

𝑀𝑅𝑅2𝐴𝐵 NOT FIXED (Edionwe et al. 2016) 

 

 

 

Table  6:  Comparison of the goodness-of-fit statistics of each method for the Chemical Process Data 

METHOD 𝒃∗ 𝑫𝑭𝒆𝒓𝒓𝒐𝒓 𝑴𝑺𝑬 𝑺𝑺𝑬 𝑹𝟐 𝑹𝒂𝒅𝒋
𝟐  𝑷𝑹𝑬𝑺𝑺 𝑷𝑹𝑬𝑺𝑺∗ 𝑷𝑹𝑬𝑺𝑺∗∗ 

    OLS -  5.000 3.1600 15.8182 83.8800 67.7700 109.5179 21.9036 21.9036 
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𝑀𝑅𝑅1𝑃𝐴𝐵  
* 2.1751 0.3771 0.8203 99.1644 96.1584 45.6825 21.0028 4.5288 

𝑀𝑅𝑅2𝑃𝐴𝐵  
* 2.0000 0.3053 0.6107 99.3800 96.8900 43.2389 21.6194 4.4617 

𝑀𝑅𝑅2𝐴𝐵 
** 2.4057 0.2988 0.7189 99.2783 97.0000 72.1981 30.0116 7.1896 

 

In Table 6, 𝑀𝑅𝑅1𝑃𝐴𝐵 and 𝑀𝑅𝑅2𝑃𝐴𝐵 that uses PAB performed better in terms PRESS, 𝑃𝑅𝐸𝑆𝑆∗,  𝑃𝑅𝐸𝑆𝑆∗∗  𝑅2 

and SSE statistics, whereas 𝑀𝑅𝑅2𝐴𝐵 that uses AB performed better in respect to MSE and 𝑅𝑎𝑑𝑗
2  statistics. “*” and 

“**” represents PAB and existing AB respectively. 

 

Figure 1: Residual plot for single response chemical process data 

 

Figure 1, is the residual plots for the six models as specified in the KEY for single response chemical process data. 

Obviously, 𝑀𝑅𝑅2𝑃𝐴𝐵  that utilizes the PAB estimated the data better in the overall residual performance.  

Table 7:  Comparison of optimization results for the Chemical Process Data 

Approach 𝒙𝟏 𝒙𝟐 �̂� 

     OLS 0.4393000000000000 0.4361000000000000 90.9783 

   𝑀𝑅𝑅1𝑃𝐴𝐵  0.0006672519293997789 0.0017565336318757729 89.2913 

   𝑀𝑅𝑅2𝑃𝐴𝐵  0.26048040669568984 0.8008798602146169 𝟗𝟏. 𝟓𝟕𝟐𝟕 

  𝑀𝑅𝑅2𝐴𝐵   0.3828000000000000 0.3921000000000000 91.4237 

 

The model, 𝑀𝑅𝑅2𝑃𝐴𝐵 perform better than in terms of 

maximum chemical yield for single response chemical 

process data as given in Table 7. Obviously, 

𝑀𝑅𝑅2𝑃𝐴𝐵 has a better experimental relationship 

between temperature (𝑥1) and time (𝑥2) as it relates to 

chemical yield. 

Application II (the multiple response chemical 

process data ) 

This problem is analyzed in [22, 23]. The aim of the 

study is to get the setting of the explanatory variables 

𝑥1 and 𝑥2 (representing reaction time and temperature, 

respectively) that would simultaneously optimize 

three quality measures of a chemical solution 𝑦1, 𝑦2 

and 𝑦3 (representing yield, viscosity, and molecular 

weight, respectively). The process requirements for 

each response are as follows: 

Maximize 𝑦1 with lower limit 𝐿 = 78.5, and target 

value ∅ = 80; 

𝑦2should take a value in the range 𝐿 = 62 and 𝑈 = 68 

with  ∅ =65; 

Minimize 𝑦3with upper limit 𝑈 = 3300 and target 

value ∅ = 3100.  

The problem as given in [22, 23] was to obtain the 

settings of the explanatory variables 𝑥1 and 𝑥2 

(representing reaction time and temperature, 

respectively) that would simultaneously optimize 

three quality measures of a chemical 

solution 𝑦1, 𝑦2 and 𝑦3 (representing yield, viscosity, 

and molecular weight, respectively). The process 

requirements for each response are as follows: 
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Maximize 𝑦1 with lower limit L = 78:5, with target 

value = 80; 𝑦2 should take a value in the range L = 62 

and U = 68 with target value = 65; minimize 𝑦3 with 

upper limit U = 3300 and target value = 3100.  

Based on the process requirements a Central 

Composite Design (CCD) was conducted to establish 

the design experiment and observed responses as 

presented in Table 8.  

Table 8:  Designed experiment and response values [22, 23] 

i 
𝑬𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕𝒂𝒍  𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔 

  𝒙𝟏                           𝒙𝟐 

Responses 

        𝒚𝟏                    𝒚𝟐                  𝒚𝟑 

1  -1                       -1          76.5 62 2940 

2   1                       -1          78.0 66 3680 

3  -1                        1          77.0 60 3470 

4   1                        1          79.5 59 3890 

5 -1.414                 0         75.6 71 3020 

6  1.414                 0         78.4 68 3360 

7          0                   -1.414         77.0 57 3150 

8         0                     1.414         78.5 58 3630 

9   0                       0         79.9 72 3480 

10   0                       0   80.3 69 3200 

11   0                       0   80.0 68 3410 

12   0                       0   79.7 70 3290 

13   0                       0   79.8 71 3500 

 

Table 9, is the transformed data from CCD to RSM data using the mathematical relation in Equation (15) that 

needed to lie between zero and one inclusively.  

 

Table 9:   Multiple Response Chemical Process Data 

𝒊 𝒙𝟏 𝒙𝟐 𝒚𝟏 𝒚𝟐 𝒚𝟑 

1 0.1464 0.1464 76.5 62 2940 

2 0.8536 0.1464 78.0 66 3680 

3 0.1464 0.8536 77.0 60 3470 

4 0.8536 0.8536 79.5 59 3890 

5 0.0000 0.5000 75.6 71 3020 

6 1.0000 0.5000 78.4 68 3360 

7 0.5000 0.0000 77.0 57 3150 

8 0.5000 1.0000 78.5 58 3630 

9 0.5000 0.5000 79.9 72 3480 

10 0.5000 0.5000 80.3 69 3200 

11 0.5000 0.5000 80.0 68 3410 

12 0.5000 0.5000 79.7 70 3290 

13 0.5000 0.5000 79.8 71 3500 

 

In the multiple response chemical process data as 

given in section 3.3, we seek to show the performance 

of  𝑂𝐿𝑆,  𝑀𝑅𝑅1𝑃𝐴𝐵 , 𝑀𝑅𝑅2𝑃𝐴𝐵 and 𝑀𝑅𝑅2𝐴𝐵 based 

on the goodness-of-fit statistics and the process 

requirements. 

In Table 10 through Table 15 represents different 

varying tuning parameters and locally adaptive 

bandwidths for 𝑀𝑅𝑅1𝑃𝐴𝐵 , 𝑀𝑅𝑅2𝑃𝐴𝐵  𝑎𝑛𝑑 𝑀𝑅𝑅2𝐴𝐵  

for a multi-response chemical process data.  

 

 

 

Table 10:  Optimal values of tuning parameters and  Locally Adaptive Bandwidths for 𝑦1using 𝑀𝑅𝑅1𝑃𝐴𝐵 

𝑖 
 𝑴𝑹𝑹𝟏𝑷𝑨𝑩 𝑹𝒆𝒈𝒓𝒆𝒔𝒔𝒊𝒐𝒏 
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𝑥1 

 

𝑥2 

 

𝑏𝑖1 

𝑇11
∗ = 1.0031000000000000   

𝑇21
∗ = 5.9998000000000000 

𝑏𝑖2 

𝑇12
∗ = 1.2694000000000000 

𝑇22
∗ = 1.0541000000000000 

1 0.2269 0.1655 

2 0.1284 0.1655 

3 0.2269 0.1218 

4 0.1284 0.1218 

5 0.2508 0.0008 

6 0.1115 0.0008 

7 0.1741 0.3174 

8 0.1741 0.2555 

9 0.1741 0.0008 

10 0.1741 0.0008 

11 0.1741 0.0008 

12 0.1741 0.0008 

13 0.1741 0.0008 

 

Table 11:  Optimal values of tuning parameters and  Locally Adaptive Bandwidths for 𝑦2using 𝑀𝑅𝑅1𝑃𝐴𝐵  

𝑖 

 𝑴𝑹𝑹𝟏𝑷𝑨𝑩 𝑹𝒆𝒈𝒓𝒆𝒔𝒔𝒊𝒐𝒏 

   

𝑥1 𝑥2 

𝑏𝑖1 

𝑇11
∗ = 1.5240000000000000 

𝑇21
∗ = 4.4808000000000000 

𝑏𝑖2 

𝑇12
∗ = 0.4149000000000000 

𝑇22
∗ = 7.6721000000000000 

1 0.3328 0.0960 

2 0.1460 0.0960 

3 0.3328 0.0627 

4 0.1460 0.0627 

5 0.3810 0.0784 

6 0.1168 0.0784 

7 0.2299 0.1037 

8 0.2299 0.0567 

9 0.2299 0.0784 

10 0.2299 0.0784 

11 0.2299 0.0784 

12 0.2299 0.0784 

13 0.2299 0.0784 

 

Table 12:   Optimal values of tuning parameters and  Locally Adaptive Bandwidths for 𝑦3using 𝑀𝑅𝑅1𝑃𝐴𝐵  

𝑖 

 𝑴𝑹𝑹𝟏𝑷𝑨𝑩 𝑹𝒆𝒈𝒓𝒆𝒔𝒔𝒊𝒐𝒏 

   

𝑥1   𝑥2 

𝑏𝑖1 

𝑇11
∗ = 3.9999996701204728   

𝑇21
∗ = 2.2512665995031690 

𝑏𝑖2 

𝑇12
∗ = 3.9999996360686363 

𝑇22
∗ = 9.9999987155096690 

1 0.7568 0.9423 

2 0.0584 0.9423 

3 0.7568 0.6877 

4 0.0584 0.6877 

5 1.0000 0.8100 

6 0.0125 0.8100 

7 0.3089 1.0000 

8 0.3089 0.6400 

9 0.3089 0.8100 
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10 0.3089 0.8100 

11 0.3089 0.8100 

12 0.3089 0.8100 

13 0.3089 0.8100 

 

 

Table 13: Optimal values of tuning parameters and  Locally Adaptive Bandwidths for 𝑦1using 𝑀𝑅𝑅2𝑃𝐴𝐵 

𝑖 

 𝑴𝑹𝑹𝟐𝑷𝑨𝑩 𝑹𝒆𝒈𝒓𝒆𝒔𝒔𝒊𝒐𝒏 

   

𝑥1 𝑥2 

𝑏𝑖1 

𝑇11
∗ = 0.5428430834699849 

𝑇21
∗ = 4.0616785539017375 

𝑏𝑖2 

𝑇12
∗ = 1.517132347364459 

𝑇22
∗ = 0.9631401273256596 

1 0.1168 0.1837 

2 0.0456 0.1837 

3 0.1168 0.2264 

4 0.0456 0.2264 

5 0.1357 0.0006 

6 0.0350 0.0006 

7 0.0771 0.3793 

8 0.0771 0.4396 

9 0.0771 0.0006 

10 0.0771 0.0006 

11 0.0771 0.0006 

12 0.0771 0.0006 

13 0.0771 0.0006 

 

 

Table 14: Optimal values of tuning parameters and  Locally Adaptive Bandwidths for 𝑦2using 𝑀𝑅𝑅2𝑃𝐴𝐵 

𝑖 

 𝑴𝑹𝑹𝟐𝑷𝑨𝑩 𝑹𝒆𝒈𝒓𝒆𝒔𝒔𝒊𝒐𝒏 

   

𝑥1 𝑥2 

𝑏𝑖1 

𝑇11
∗ =3.9589536215421037 

𝑇21
∗ =1.5349728681657138 

𝑏𝑖2 

𝑇12
∗ =2.251860516028199 

𝑇22
∗ =1.603928067610862 

1 0.6482 0.3762 

2 0.0125 0.3762 

3 0.6482 0.0023 

4 0.0125 0.0023 

5 0.9897 0.0798 

6 0.0908 0.0798 

7 0.1202 0.5630 

8 0.1202 0.0343 

9 0.1202 0.0798 

10 0.1202 0.0798 

11 0.1202 0.0798 

12 0.1202 0.0798 

13 0.1202 0.0798 

 

 

 

 

 

Table 15: Optimal values of tuning parameters and  Locally Adaptive Bandwidths for 𝑦3using 𝑀𝑅𝑅2𝑃𝐴𝐵 

𝑖 
 𝑴𝑹𝑹𝟐𝑷𝑨𝑩 𝑹𝒆𝒈𝒓𝒆𝒔𝒔𝒊𝒐𝒏 
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𝑥1 𝑥2 

𝑏𝑖1 

𝑇11
∗ =0.47582949147420456 

𝑇21
∗ =4.8815664001472030 

𝑏𝑖2 

𝑇12
∗ =1.4226028183585662 

𝑇22
∗ =0.8797899080227980 

1 0.1051 0.1583 

2 0.0503 0.1583 

3 0.1051 0.3146 

4 0.0503 0.3146 

5 0.1190 0.0066 

6 0.0415 0.0066 

7 0.0752 0.3557 

8 0.0752 0.5766 

9 0.0752 0.0066 

10 0.0752 0.0066 

11 0.0752 0.0066 

12 0.0752 0.0066 

13 0.0752 0.0066 

 

The fixed mixing parameters for the models,  𝑀𝑅𝑅1𝑃𝐴𝐵 , 𝑀𝑅𝑅2𝑃𝐴𝐵, and the 𝑀𝑅𝑅2𝐴𝐵 as obtained via genetic 

algorithm tool in Matlab are presented in Table 16 

 

Table 16:   Mixing Parameters of different models for Multiple Chemical Process Data 

Response Model 𝝀 

𝑦1 

𝑂𝐿𝑆 NOT APPLICABLE 

𝑀𝑅𝑅1𝑃𝐴𝐵  1.0000000000000000 

𝑀𝑅𝑅2𝑃𝐴𝐵  1.0000000000000000 

𝑀𝑅𝑅2𝐴𝐵 NOT FIXED 

𝑦2 

𝑂𝐿𝑆 NOT APPLICABLE 

𝑀𝑅𝑅1𝑃𝐴𝐵  0.7085329578261933 

𝑀𝑅𝑅2𝑃𝐴𝐵  1.0000000000000000 

𝑀𝑅𝑅2𝐴𝐵 NOT FIXED 

𝑦3 
𝑂𝐿𝑆 NOT APPLICABLE 

𝑀𝑅𝑅1𝑃𝐴𝐵  0.9319961759530458 

 𝑀𝑅𝑅2𝑃𝐴𝐵  1.0000000000000000 

 𝑀𝑅𝑅2𝐴𝐵 NOT FIXED 

 

Table 17: Model goodness-of-fits statistics for Multiple Chemical Process Data 

Response Model 𝑫𝑭 𝑷𝑹𝑬𝑺𝑺∗∗ 𝑷𝑹𝑬𝑺𝑺 𝑺𝑺𝑬 𝑴𝑺𝑬 𝑹𝟐(%) 𝑹𝑨𝒅𝒋
𝟐 (%) 

𝑦1 

𝑂𝐿𝑆 7.0000 - - 0.4962 0.4962 98.2733 97.0400 

𝑀𝑅𝑅1𝑃𝐴𝐵 4.0144 0.0481 0.6687 0.2165 0.0539 99.2469 97.7489 

𝑀𝑅𝑅2𝑃𝐴𝐵  0.0984 0.9548 0.2131 0.0533 99.2600 97.7800 

𝑀𝑅𝑅2𝐴𝐵 5.3254 0.2691 2.6547 0.2711 0.0509 99.0547 97.8700 

𝑦2 

𝑂𝐿𝑆 7.0000 - - 36.2242 5.1749 89.9725 82.8100 

𝑀𝑅𝑅1𝑃𝐴𝐵 4.8751 7.5752 107.9471 12.2280 2.5083 96.6149 91.6676 

𝑀𝑅𝑅2𝑃𝐴𝐵 4.0000 9.7470 109.5441 10.0023 2.5006 97.2300 91.6900 

𝑀𝑅𝑅2𝐴𝐵 5.3830 16.7814 197.1175 12.8545 2.3880 96.4427 92.0700 

𝑦3 
𝑂𝐿𝑆 7.0000      -       - 207870   29696 75.8967  58.6800 

𝑀𝑅𝑅1𝑃𝐴𝐵 6.5922 26522 361000 79164  12009 90.8216 83.2923 

 𝑀𝑅𝑅2𝑃𝐴𝐵 4.0000 50382 545270 66047   16512 92.3400 77.0300 

 𝑀𝑅𝑅2𝐴𝐵 4.9155 52728 593130  68698   13976 92.0369  80.5600 
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In Table 17, 𝑀𝑅𝑅1𝑃𝐴𝐵 , outperformed OLS, 𝑀𝑅𝑅2𝑃𝐴𝐵  

and 𝑀𝑅𝑅2𝐴𝐵 in terms of PRESS and 𝑃𝑅𝐸𝑆𝑆∗∗ with 

respect to chemical yield (𝑦1). Whereas, 𝑀𝑅𝑅2𝐴𝐵 

performed better than other models considered in 

terms of MSE and 𝑅𝐴𝑑𝑗
2  for chemical yield (𝑦1) and 

𝑀𝑅𝑅2𝑃𝐴𝐵 performed better with  respect to SSE and 

𝑅2 than OLS, 𝑀𝑅𝑅1𝑃𝐴𝐵  for chemical yield (𝑦1). For 

viscosity (𝑦2), 𝑀𝑅𝑅1𝑃𝐴𝐵  outperformed 𝑀𝑅𝑅2𝑃𝐴𝐵  

and  𝑀𝑅𝑅2𝐴𝐵 in terms of PRESS and 𝑃𝑅𝐸𝑆𝑆∗∗ 

statistics whereas, and, 𝑀𝑅𝑅2𝑃𝐴𝐵  performed better 

over OLS,  𝑀𝑅𝑅1𝑃𝐴𝐵  and 𝑀𝑅𝑅2𝐴𝐵in terms of SSE 

and 𝑅2, and 𝑀𝑅𝑅2𝐴𝐵 performed better over 

𝑀𝑅𝑅1𝑃𝐴𝐵 and 𝑀𝑅𝑅2𝑃𝐴𝐵 in terms of MSE and 𝑅𝐴𝑑𝑗
2 . 

In terms of molecular weight (𝑦3), 𝑀𝑅𝑅1𝑃𝐴𝐵  

outperformed OLS,  𝑀𝑅𝑅2𝑃𝐴𝐵  and 𝑀𝑅𝑅2𝐴𝐵 in terms 

of PRESS, PRESS**, MSE and 𝑅𝐴𝑑𝑗
2 . Whereas, in 

terms of 𝑅2 statistics, 𝑀𝑅𝑅2𝑃𝐴𝐵   performed better 

than 𝑀𝑅𝑅1𝑃𝐴𝐵 and  𝑀𝑅𝑅2𝐴𝐵 . Therefore, in the 

overall goodness of fit statistics 𝑀𝑅𝑅1𝑃𝐴𝐵 performed 

better than OLS, 𝑀𝑅𝑅2𝑃𝐴𝐵and 𝑀𝑅𝑅2𝐴𝐵. 

 

Figure 2: Plot A, Maximize Chemical yield; Plot B, a two sided transformation for viscosity; Plot C,  

    minimize molecular weight 

Figure 2 is basically the residual plots for different models as given in the KEY for which the model 𝑀𝑅𝑅1𝑃𝐴𝐵  

performed better in terms of minimum residual points, meaning 𝑀𝑅𝑅1𝑃𝐴𝐵 estimated the data better than other 

models considered. 

 

Table 18:   Model optimal solution based on the Desirability function for multiple chemical Process Data 

Model 𝒙𝟏 𝒙𝟐 �̂�𝟏 �̂�𝟐 �̂�𝟑 𝒅𝟏 𝒅𝟐 𝒅𝟑 𝑫(%) 

𝑂𝐿𝑆 
0.444900000000

0000 

0.222600000000

0000 

78.76

16 

66.48

27 

3229.90

00 

0.17

44 

0.50

58 

0.35

04 

31.38

00 

𝑀𝑅𝑅1𝑃𝐴𝐵 
0.545836619093

2497 

0.146400485050

63175 

79.35

68 

64.79

11 

3196.80

00 

0.57

12 

0.93

04 

0.51

62 

64.97

58 

𝑀𝑅𝑅2𝑃𝐴𝐵 
0.536038290847

3450 

0.229653107038

3355 

78.78

80 

66.42

83 

3193.70

00 

0.19

20 

0.52

39 

0.53

14 

37.67

23 

𝑀𝑅𝑅2𝐴𝐵 
0.515900000000

0000 

0.211000000000

0000 

78.86

06 

66.12

67 

3158.20

00 

0.24

04 

0.62

44 

0.70

90 

47.39

00 

 

In Table 18, the proposed model 𝑀𝑅𝑅1𝑃𝐴𝐵  satisfies 

the choice of process requirements for a multiple 

chemical process data. Hence, the overall desirability 

with the highest percentage gives the best production 

requirements.  

CONCLUSION  

In RSM, the stages are sequential, a new product is 

exposed to experimental design phase, modeling 

phase of the fitted regression model and the 

optimization phase with the aim to find setting of the 

explanatory variables that optimize responses as it 

relates to the quality of the new product. This 

sequential procedure is referred to as product 

qualification in the manufacturing industries, see [1, 

24].  

We have looked at four regression models 

such as OLS,  𝑀𝑅𝑅1𝑃𝐴𝐵 , 𝑀𝑅𝑅2𝑃𝐴𝐵 and  𝑀𝑅𝑅2𝐴𝐵for 

two RSM data. For the single response chemical 

problem,  𝑀𝑅𝑅2𝑃𝐴𝐵   in terms of goodness-of-fit 

statistics gives the overall best performance in the data 

analysis. Whereas, in the residual plot, ,  𝑀𝑅𝑅2𝑃𝐴𝐵   

residual gave the smallest residual line. In terms of the 

optimization results,  𝑀𝑅𝑅2𝑃𝐴𝐵  optimizes the 

response (chemical yield) better with a maximum 

chemical yield of 91.5727% with respect to 

temperature and time. 

In the multi-response chemical process data, 

 𝑀𝑅𝑅1𝑃𝐴𝐵  performed better in terms of goodness-of-

fit statistics which by implication gives a better 
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explanation to the data. For the residual plot, 

 𝑀𝑅𝑅1𝑃𝐴𝐵  gives a residual line that is closer to the 

zero residual line. Lastly, the 𝑀𝑅𝑅1𝑃𝐴𝐵  satisfies the 

process requirement for the reaction time and 

temperature that optimizes three chemical solutions 

representing yield, viscosity and molecular weight 

respectively with overall desirability of 64.9758%. 
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