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ABSTRACT 

The assumptions of the classical linear regression model are hardly satisfied in real life situation. Violation of the 

assumption of independent explanatory variables and error terms in linear regression model leads to the problems of 

multicollinearity and autocorrelation respectively. Estimators to handle each problem have been separately developed 

by different authors. Moreover, in practice, these two problems do co-exist but estimators to handle them jointly are 

rare. Consequently, this research proposed and validate two estimators, Feasible Ordinary Ridge Estimators (FORE) 

and Feasible Generalized Ridge Estimators (FGRE), to handle the problems of multicollinearity and autocorrelation 

separately. The existing and proposed estimators were categorized into five (5) groups namely: One–Stage Estimators 

(OSE), Two–Stage Estimators (TSE), Feasible Generalized Least Square Estimators (FGLSE), Two-Process 

Estimators (TPE) and Modified Ridge Estimators (MRE). Monte Carlo experiments were conducted one thousand 

(1000) times on a linear regression model exhibiting different degrees of multicollinearity ( 0.4, 0.6, 0.8, 0.95 

and 0.99) with both normally and uniformly distributed regressors and autocorrelation (

) at six sample sizes (n =10, 20, 30, 50, 100 and 250). In this study our autocorrelation 

is set to Zero (ρ = 0). Finite sampling properties of estimators namely; Bias (BAS), Mean Absolute Error (MAE), 

Variance (VAR) and most importantly Mean Square Error (MSE) of the estimators were evaluated, examined and 

compared at each specified level of multicollinearity, autocorrelation and sample sizes. These were done by ranking 

the estimators on the basis of their performances according to the criteria so as to determine the best estimator. Results 

of the investigation when multicollinearity alone was in the model revealed that the best estimator is in the category 

of One-Stage Estimator (OSE). With normally distributed regressor, the best estimator is generally the existing 

estimator OREKBAY except under the bias criterion. At this instance, the estimators FGLSE, ML and CORC are the 

best. Also, with uniformly distributed regressor, it was observed that the best estimator under all criteria is the existing 

estimator OREKBAY except under the bias criterion. At this instance the OLSE and FGLSE - ML are the best. 
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INTRODUCTION 

 

Multicollinearity is one of the important problems in 

multiple regression analysis. It is usually regarded as a 

problem arising as a result of the violation of the 

assumption that explanatory variables are linearly 

independent. However, just satisfaction of this 

assumption does not preclude the possibility of an 

approximate linear dependence among the explanatory 

variables, and hence the problem of multicollinearity. 

Though no precise definition of multicollinearity has 

been firmly established in the literature, 

multicollinearity is generally agreed to be present if 

there is an approximate degree of linear relationship 

among some of the predictor variables in the data. 

Bowerman and Connell [1] stated that the term 

multicollinearity refers to a situation in which there is an 

exact (or nearly exact) linear relation among two or 

more of the explanatory variables. Exact relations may 

arise by mistake or lack of understanding. 

Multicollinearity can also be defined in the concept of 

orthogonality.  When the predictors are orthogonal or 

uncorrelated, all eigenvalues of the design matrix are 

equal to one and the design matrix is full rank. If at least 

one eigenvalue is different from one, especially when 

equal to zero or near zero, then non-orthogonality exists, 

meaning that multicollinearity is present. 

Multicollinearity can lead to increasing complexity in 

the research results, thereby posing difficulty for 

researchers to provide interpretation Charterjee et al. 

[2]. In theory, there are two extremes; Perfect 

Multicollinearity and No Multicollinearity. In practice, 

data typically are somewhere between those extremes. 

Thus, multicollinearity is a matter of degree. The real 

issue is to determine the point at which the degree of 

multicollinearity becomes “harmful”. The econometric 

literature typically takes the theoretical position that 

predictor variables are not collinear in the population. 

Hence, any observed multicollinearity in empirical data 

is considered as a sample based “problem” rather than 

as representative of the underlying population 

relationship Kmenta [3]. In many marketing research 
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situations, however, it is unrealistic to assume that 

predictor variables are always strictly orthogonal at the 

population level especially when one is working with 

behavioral constructs. Regardless of whether 

multicollinearity in data is assumed to be a sampling 

problem or true reflection of population relationships, it 

must be looked into when data are analyzed using 

regression analysis because it has several potential 

undesirable consequences on the parameter estimates. 

When multicollinearity is a problem, parameter 

estimates have wrong signs when compared with 

theoretical knowledge and variables have insignificant 

coefficients. The regression coefficients, though 

determinate when multicollinearity is imperfect, possess 

large standard errors which imply that the coefficients 

cannot be estimated with great precision. Hawking and 

Gujarati [4, 5] Various other estimation methods have 

been developed to tackle this problem. These estimators 

include Stein estimator introduce by James [6], Ridge 

Regression estimator developed by Hoerl and Kennard 

[7]. Estimator based on Principal Component 

Regression suggested by Massy, Manfield and Paris [8 

– 10], and method of Partial Least Squares developed by 

Wold [11]. Ayinde et al [12] examined the performances 

of estimators based on principal component regression, 

ML and Cochrane Orcutt. 

The term autocorrelation may be defined as 

“correlation between members of series of observations 

ordered in time [as in time series data] or space [as in 

cross-sectional data].’’ In the regression context, the 

classical linear regression model assumes that such 

autocorrelation does not exist in the disturbances ui . 

Symbolically, E(ui uj) = 0  i ≠ j. The classical model 

assumes that the disturbance term relating to any 

observation is not influenced by the disturbance term 

relating to any other observation. For example, if we are 

dealing with quarterly time series data involving the 

regression of output on labor and capital inputs and if 

there is a labor strike affecting output in one quarter, 

there is no reason to believe that this disruption will be 

carried over to the next quarter. That is, if output is lower 

this quarter, there is no reason to expect it to be lower 

next quarter. Similarly, if we are dealing with cross-

sectional data involving the regression of family 

consumption expenditure on family income, the effect 

of an increase of one family’s income on its 

consumption expenditure is not expected to affect the 

consumption expenditure of another family. However, if 

there is such a dependence, we have autocorrelation 

Formby et al. [13].  

The inefficiency of Ordinary Least Square 

estimator to estimate the parameters of linear regression 

model in the presence of autocorrelation led to the 

development of Generalized Least Squares (GLS) 

estimator.  It requires the true autocorrelation value to 

be known which is not often so. Using the estimated 

autocorrelation value leads to the development of 

Feasible Generalized Least Squares (FGLS) estimators.  

Thus, studying the finite sample properties of these 

estimators becomes very imperative. This seems to be 

very difficult analytically [14]. However, Monte Carlo 

approach is often utilized to accomplish this task. 

Cochrane and Orcutt [15], an economist, observed that 

the presence of autocorrelated error terms requires some 

modifications for the OLS estimator to be used. Their 

suggestion involved an autoregressive transformation of 

the series involved and that the quasi first differences of 

such series should be used.  Kadiyala [16] observed that 

the transformation suggested by [15] can lead to a less 

efficient estimator. He therefore suggested that the 

addition of one weighted observation to CORC 

procedure may give a better estimator practically 

without any extra cost. Rao and Griliches [17] did one 

of earliest Monte Carlo investigations on this study. The 

estimators they examined include OLS, CORC, Two-

Step estimators based on Durbin ρ̂ and Prais–Winsten. 

Their major conclusions were; the OLS estimator is less 

efficient than all other methods considered for moderate 

and high values of (|ρ|>0.3) and there is a definite gain 

from using feasible generalized least squares when 

|ρ|≥0.3 and little loss from using such methods 

otherwise. 

The work of [17] was revisited by Spitzer [18]; 

but in addition to the estimators considered by [17], he 

examined the performance of ML estimator. Situations 

where the two problems exist together in a data set are 

not uncommon. Therefore, this paper attempts to 

investigate the performances of the proposed estimators 

when multicollinearity alone is in the model through 

Monte Carlo studies. 

 

METHODOLOGY 

 

Estimators for handling multicollinearity  

generalized ridge estimator 

The generalized ridge estimator of β is given as   β�̂� =
(X′X + KI)−1X′Y where K is a diagonal matrix with non 

negative diagonal elements (K1, K2, … , Kp). The Ki(i =

1,2, … , p) need not be equal. The optimum value of K 

had been obtained by Hoerl et al. [19] as: 

              Ki = 
σ2

αi
2  i = 1,2,3, … , p.               (1) 

Since σ2 and αi
2 are generally unknown, the Ki 

needs to be estimated. [19] suggested the 

replacement of σ2 and αi
2 by their 

corresponding unbiased estimators σ̂2and α̂i
2. 

Therefore, K̂i =
σ̂2

α̂i
2 where σ̂2 =

∑ ei
2n

i=1

n−p
. (The 

estimated error variance from OLS estimation) 

and αi
2 is the regression coefficient from OLS 

estimation. 
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The ordinary ridge estimator 

The Ordinary ridge regression (ORR) estimator requires 

a fixed value of the ridge Parameter, K.  Several Ks have 

also been proposed by authors including [7] and that of 

Ayinde et al. [20] respectively given as: 

K̂HK = 
 �̂�2

Max(�̂�)2
                                (2) 

   K̂LA =  
 �̂�2

[Max(�̂�)]2
               (3) 

Sclove [21] suggested an empirical K-Bayesian Ridge 

Parameter given as:  

  K̂BAY =     
(SSR/n−p)

(∑ y2  −SSR/ trace(XʹX)) 
                           (4) 

Where SSR = Sum of Square of Regression 

 

Estimators for handling autocorrelation 

Consider the Linear Regression Model with 

Autoregressive of order 1, AR (1) given as: 

yt =  β+ β1 x1t+ β2 x2t+…+ βk xk-t + ut                        (5)                                                          

Where ut= ρut−1  + εt 

Therefore, the variance – covariance matrix becomes: 

E(UU′) = 𝜎2Ω =

𝜎2

[
 
 
 
 
 
 

1 𝜌 𝜌2 ⋯ 𝜌𝑛−2 𝜌𝑛−1

𝜌 1 𝜌 ⋯ 𝜌𝑛−3 𝜌𝑛−2

𝜌2 𝜌 1 ⋯ 𝜌𝑛−4 𝜌𝑛−3

⋮ ⋮ ⋮ ⋯ ⋮ ⋮
𝜌𝑛−2 𝜌𝑛−3 𝜌𝑛−4 … 1 𝜌

𝜌𝑛−1 𝜌𝑛−2 𝜌𝑛−3 ⋯ 𝜌 1 ]
 
 
 
 
 
 

             (6) 

 

      and  σ2 = σu
2  = 

σv
2

(1−ρ2)
, 

      and the inverse of  Ω is given as: 

 

Ω−1 1

1−𝜌2 

[
 
 
 
 
 

1 −𝜌 0 ⋯ 0 0

−𝜌 1 + 𝜌2 −𝜌 ⋯ 0 0

0 −𝜌 1 + 𝜌2 ⋯ 0 0
⋮ ⋮ ⋮ ⋯ ⋮ ⋮
0 0 0 … 1 + 𝜌2 −𝜌
0 0 0 ⋯ −𝜌 1 ]

 
 
 
 
 

    

(7)              

We now search for a suitable transformation matrix P*. 

If we consider first an (n-1) x n matrix P* defined as: 

                         P∗ =

[
 
 
 
 
−𝜌 1 0 ⋯ 0 0
0 −𝜌 1 ⋯ 0 0
0 0 −𝜌 ⋯ 0 0
⋮ ⋮ ⋮ ⋯ ⋮ ⋮
0 0 0 ⋯ −𝜌 1]

 
 
 
 

 (8)                                                                 

 

 

Multiplying then shows that P*′P* gives an n x n matrix 

which apart from a 

proportional  

constant is identical with Ω-1 except for the first elements 

in the leading 

diagonal. 

Now if we consider an n x n matrix P obtained from P* 

by adding a new 

row to the first row  

with √1 − ρ2 in the first position and zero elsewhere, 

that is  

     P =

[
 
 
 
 
 (1 − 𝜌2)

1

2 0 0 ⋯ 0 0
−𝜌 1 0 ⋯ 0 0
0 −𝜌 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋯ ⋮ ⋮
0 0 0 ⋯ −𝜌 1]

 
 
 
 
 

               (9) 

The difference between P* and P lies only in the 

treatment of the first sample observation. P* is much 

easier to use provided we are prepared to lose 

information on the first observation. However, when n 

is large, the difference is negligible, but in small sample, 

the difference can be major. Moreover, there is need for 

Ω or more precisely ρ to be known for the GLS via the 

transformation matrix P* and P to be used.  This is not 

often the case; we resort to estimating Ω by Ω̂ to have 

Feasible Generalized Least Squares estimator (FGLSE). 

There are several ways of consistently estimating  ρ , 
after which either the P* or P transformation matrix can 

be used. 

The estimators are: 1. Cochrane and Orcutt Estimator 

(CORC): Iterative Procedure 2. Maximum Likelihood 

Estimator (ML) 

The Proposed Estimators: The proposed estimators 

were classified into three (3) groups and are presented 

as follows: 

1. Two – Stage Estimators (TSE): The 

discussion requiring an (n x n) or (n-1 x n) non-

singular Matrix P for GLSM transformation, 

the true autocorrelation value (  ) was used to 

obtain the Matrix P to transform the data. Thus, 

the following estimators are proposed. The 

algorithms required are as follows: 

(N-1) - Autocorrelation Corrected 

Generalized Least Square Estimators  

[(N-1)-AUTOCOGLSE]: 

This estimator requires using (n-1) x n matrix 

P to transform the data. It can also be referred 

to as Generalized Least Square Estimator.  The 

procedures are as follows:  

i. Transform the data using true 

autocorrelation value. 

ii. Apply OLS estimator on the 

transformed data to obtain the estimates of the 

parameters of the regression model. 

NOTE: Since these estimators require the use 

of true autocorrelation values, therefore, they 

do not find relevance in practice. 

2. Two – Process Estimators (TPE): In Practice, 

the true autocorrelation value is not known. 

These estimators are proposed by using the 

estimated autocorrelation value resulting from 
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known Feasible Generalized Least Square 

Estimator to transform the data before any 

other estimator is applied. The estimators and 

algorithms required are as follows: 

3. Modified Ridge Estimators: 

The ridge estimators discussed in section (2.3) 

require estimation of 

𝐾𝑖 =
�̂�2

�̂�𝑖
2 

   where, 
2


  is the Mean Square Error based 

on OLS estimation 
2

i


 is the regression coefficient i 

based on OLS estimation, i = 

1,2.........p. 

Now, since there is autocorrelation problem, using OLS 

estimator is inappropriate. It underestimates the variance 

of the regression co-efficient and the MSE is biased and 

inconsistent of 𝜎2 (Johnston, 1984). The proposed 

estimators used the appropriate estimators, CORC and 

ML, to obtain MSE and the regression coefficients. 

These result into the following proposed estimators. The 

algorithms required are as follows: 

 

Model formulation 

Consider the linear regression model given as: 

𝑦𝑡 = 𝛽0 + 𝛽1𝑥1𝑡 + 𝛽2𝑥2𝑡 + 𝛽3𝑥3𝑡 + 𝜇𝑡           (10)                                   

  

Where,  𝜇𝑡 = 𝜌𝜇𝑡−1 + 𝜀𝑡,  |𝜌| < 1,    

 𝑡 = 1,2, , …… …… 𝑛,     𝜀𝑡~ 𝑁 (0, 𝜎2). 

The regressors are fixed and exhibit different degree of 

multicollinearity. 

 

The Monte Carlo Experiments 

The experiment was replicated (R) one thousand time 

(1000) and at sample sizes of 

 n = 10,20,30,50,100 and 250. 

 

Generation of Data: Generation of the Explanatory 

Variables 

a. Correlated Normally distributed Variables 

The equations provided and used by [22] were used 

to generate normally distributed random variables 

with specified inter-correlation. With p = 3, the 

equations are: 

 𝑋1 = 𝜇1 + 𝜎1𝑧1                                             (11) 

 𝑋2 = 𝜇2 + 𝜆12𝜎12 + √𝑚22𝑧2                       (12) 

 𝑋3 = 𝜇3 + 𝜆13𝜎3𝑧1 +
𝑚23

√𝑚22
+ √𝑛33𝑧3 (13)     

 Where, 

 𝑚22 = 𝜎2(1 − 𝜆12
2 ) 

 𝑚23 = 𝜎2𝜎3(𝜆23 − 𝜆12𝜆13) 

 𝑚33 = 𝜎2(1 − 𝜆13
2 ) 

 and 𝑛33 = 𝑚33 −
𝑚23

2

𝑚22
 ; and  𝑧𝑖~𝑁(0,1), 

𝑖 = 1 , 2 , 3 

By these equations, the inter-correlation matrix 

has to be positive definite among the 

independent variables. 

In this study, 

  12 =   13 =  23 =  =

 0.4, 0.6, 0.8, 0.95 𝑎𝑛𝑑 0.99;  𝑎𝑛𝑑  𝑥𝑖~𝑁(0,1), 

             𝑖 = 1 , 2 , 3 

b. Correlated Uniformly Distributed Variables 

Using the generated correlated normally distributed 

variables above,  𝑥𝑖~𝑁(0,1),       𝑖 = 1 , 2 , 3 ; the 

study further utilized the properties of random 

variables that cumulative distribution function of 

normal distribution produce U(0,1) without 

affecting the correlation among variables to 

generate correlated uniform distributed variables  

𝑥𝑖~𝑈(0,1),     𝑖 = 1 , 2 , 3 [23] 

c. Generation of the error term 

The error terms were generated by using the 

distributional properties of the autocorrelation error 

terms of AR (1) model given as:  

  𝑢𝑡  ~ 𝑁 (0,
σe

2

(1−ρ2)
)           (14) 

Thus, assuming the model start from infinite 

past, the error terms were generated as 

 follows: 

u1  =  
𝜀1

√1 −𝜌2
                           (15) 

 𝑢𝑡 = 𝜌𝑢𝑡−1 + 𝜀𝑡,    𝑡 =  2 ,3,4 …… … . 𝑛     (16) 

Autocorrelation value  (𝜌) is varied from 0.4, 

0.8, 0.95, and 0.99 but in this study it is set to 

be zero (ρ = 0). 

d. Generation of Dependent Variable 

The model parameter values were taken as  𝛽0 =
 0,  𝛽1= 0.8,  𝛽2 = 0.1 and 𝛽3 = 0.6 . Thus, 

the dependent variable was also determined. Data 

were therefore generated for all the specifications of 

different combinations of multicollinearity, 

autocorrelation and sample size; a total of one 

hundred and twenty (120) different combinations 

(6x5x4) all together. 

 

Estimation methods used in the study 

They were categorized into five groups as follows: 

1. One – Stage Estimator (OSE): These are 

existing estimation techniques that require only one 

stage in their estimation procedures. They are given as 

follows:  

i. Ordinary Least Squares Estimator 

(OLSE) 

ii. Generalized Ridge Estimator (GRE) 

iii. Ordinary Ridge Estimator with K –

Bayesian (OREKBAY) 



Bello (2022); Estimators for handling multicollinearity problems in linear regression model 

Nigerian Journal of Scientific Research, 21(1): 2022; January–June; journal.abu.edu.ng; ISSN-0794-0378           50 

 

iv. Ordinary Ridge Estimator with K-

Lukman and Ayinde (OREKLA) 

2. Two -Stage Estimators (TSE):  These are: 

i. (N-1) -Autocorrelation Corrected 

Generalized Least Square Estimators  

 (N-1) –AUTOCOGLSE]: 

ii. (N-1) - Autocorrelation Corrected 

Generalized Ridge Estimators [(N-1) 

–AUTOCOGRE]: and others 

remaining estimators 

3. Feasible Generalized Least Square 

Estimators (FGLSE): These are existing 

estimators: 

i. Corchran Orcutt Estimator (CORC) 

ii. Maximum Likelihood Estimator 

(ML) 

4. Two- Process Estimators (TPE): These are: 

i. (N-1) - Autocorrelation Corrected 

Feasible Generalized Least Square 

Estimators [(N-1) -AUTOCOFGLSE-

CORC]: 

ii. (N-1) - Autocorrelation Corrected  

 Feasible Generalized Ridge Estimators  

[(N-1) -AUTOCOFGRE-CORC]: 

and others remaining estimators 

5. Modified Ridge Estimators (MRE): 

These are:  

 i. Cochrane Orcutt Modified   

Generalized Ridge Estimator (CORCMGRE) 

ii. Cochrane Orcutt Modified Ordinary 

Ridge Estimator-KBAY 

 (CORCMORE-KBAY) 

and others remaining estimators 

 

Criteria for evaluation, examination and comparison 

of the estimators 

Evaluation, examination and comparison of the 

estimators were done based on their finite sampling 

properties. These include Bias closest to zero (BAS), 

Mean Absolute Error (MAE), Variance (VAR) and 

Mean Square Error (MSE) defined as follows: 

i. �̂�i  = 
1

1000
∑ �̂�𝑖𝑗

1000
𝑗=1            (17) 

ii. BAS(�̂�i) = ⃒
1

1000
∑  ( �̂�𝑖𝑗

1000
𝑗=1  - 𝛽𝑖) ⃒       (18) 

iii. MAE (�̂�i) = 
1

1000
∑ ⃒�̂�𝑖𝑗

1000
𝑗=1 − 𝛽𝑖  ⃒        (19) 

iv. VAR (�̂�i) =  
1

1000
∑ ( �̂�𝑖𝑗

1000
𝑗=1 - ˆ

i )2 (20) 

v. MSE(�̂�i)  = Bias(�̂�i)2 + Var(�̂�i)      (21) 
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RESULTS AND DISCUSSIONS 

 

Results when there is multicollinearity alone in the model 

Table 1: Summary of the best estimators on the basis of criteria at different sample sizes with  

 normally and uniformly distributed regressors when multicollinearity alone is in the model 
  NOR

MAL 

        UNIFOR

M 

   

N BIAS MAE VAR MS

E 

OVE

R 

ALL 

 BIAS MAE VAR MSE  OVER 

ALL 

 
 

 

10 
 

(N-1)-
AUTOC

O 

FGLSE-
CORC/C

ORC 

(2) 
N-

AUTOC

O 

FGLSE-

ML/ML 

(3) 

GRE 
(2) 

ORE 

KBAY 

(3) 

 

GRE 
(2) 

ORE 

KBA

Y 

(3) 

GR
E 

(2) 

OR

E 

KB

AY 

(3) 

(N-1)-
AUTO

CO 

FGLS
E-

CORC

/ 
CORC 

(2) 

N-
AUTO

CO 

FGLS
E-

ML/M
L 

(3) 

GRE 
(6) 

ORE 

KBA

Y 

(9) 

 

 
 

 

 

 

OLSE 

(4) 

N-AUTOCO 

FGLSE-
ML/ML 

(1) 

OREKBA

Y 

(3) 

OREKLA 
(1) 

MLMGRE 

(1) 

GRE 

(4) 

OREKB

AY 
(1) 

OREKBAY 

(3) 

OREKLA 

(1) 
GRE 

(1) 

 

 

 

 
 

 

 

OLSE 
(4) 

N-

AUTOCO 
FGLSE-

ML/ML 

(1) 
GRE 

(5) 

OREKBA

Y 

(7) 

OREKLA 
(2) 

MLMGRE 
(1) 

 

 

 
 

20 

N-

AUTOC

O 

FGLSE-

ML/ML 

(3) 

OLSE 
(2) 

ORE 

KBAY 

(5) 

 

ORE 

KBA

Y 

(5) 

 

OR

E 

KB

AY 

(5) 

 

N-
AUTO

CO 

FGLS
E-

ML/M

L 
(3) 

OLSE 

(2) 
ORE 

KBA

Y 

(15) 

 

 

 

 

 

OLSE 

(5) 

OREKBA

Y 

(4) 

CORCMO
RE-KLA 

(1) 

ORE 

KBAY 

(4) 

CORCM
ORE-

KLA 

(1) 

OREKBAY 

(4) 

CORCMOR

E-KLA 
(1) 

 

 

 

 
 

OREKBA

Y 

(12) 

OLSE 
(5) 

CORCM 

ORE-KLA 
(3) 

 

 

 
30 

N-

AUTOC

O 

FGLSE-

ML/ML 

(5) 

OREK
LA 

(1) 

ORE 

KBAY 

(4) 

OREK
LA 

(1) 

ORE 

KBA

Y 

(4) 

OR

E 

KB

AY 

(5) 

N-
AUTO

CO 

FGLS
E-

ML/M

L 
(5) 

ORE 

KBA

Y 

(13) 

OREK
LA 

(2) 

 
 

 

 
 

 

 

 

N-AUTOCO 

FGLSE-

ML/ML 
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From Table 1, the following are observed about the best estimator(s) under each criterion. 

Graphical Representation of choice Estimaors when Multicollinearity is in the Model with Normally and Uniformly 

Distributed Regressors. 

 

 
Figure 1A: Compound Bar Chart of Choice Estimators with Normally Distributed   

 Regressors when Multicollinearity alone is in the model (MSE Criterion) 
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Figure 1B: Compound Bar Chart of Choice Estimators with Uniformly Distributed Regressors when Multicollinearity 

alone is in the model (MSE Criterion) 
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OREKLA and GRE also perform well 

occasionally.  In addition, CORCMOREKLA 

is also best under variance criterion when the 

sample size is medium (n=50). Moreover, other 

estimators that do well include MLMGRE, N-

AUTOCOGRE-ML and N-

AUTOCOFOREKBAY. The frequency of 

each estimator being chosen as a choice 

estimator is presented pictorially in Figure 1B. 

iii. It should be noted that MLGRE, 

CORCMOREKLA, CORCMOREKBAY,  

N-AUTOCOGRE-ML and N-

AUTOCOFOREKBAY that also do well are 

among the newly proposed estimators. 

iv. Although OLSE is unbiased but these results 

agreed with the finding that the Ridge 

Estimators are more efficient than the OLSE in 

the presence of multicollinearity.[14] 

 

CONCLUSION 

 

It can be observed that the results of OREKBAY and N-

AUTOCOOREKBAY, GRE and N-AUTOCOGRE are 

the same. This is because there is no autocorrelation 

problem in the results being presented. In the presence 

of multicollinearity with normally distributed regressor, 

the best estimator is generally the existing estimator 

OREKBAY except under the bias criterion. At this 

instance, the estimators FGLSE, ML and CORC are the 

best. Also, with uniformly distributed regressor, it was 

observed that the best estimator under all criteria is the 

existing estimator OREKBAY except under the bias 

criterion. At this instance the OLSE and FGLSE - ML 

are the best. 
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