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ABSTRACT 

Violation of the assumption of independent explanatory variables and error terms in linear regression model leads to 

the problems of multicollinearity and autocorrelation respectively. Different estimators that can handle these problems 

separately have been developed. Moreover, in practice, these two problems do co-exist but estimators to handle them 

jointly are rare. Consequently, this research proposed and validate two estimators, Feasible Ordinary Ridge Estimators 

(FORE) and Feasible Generalized Ridge Estimators (FGRE), to handle the problems of autocorrelation separately. 

The existing and proposed estimators were categorized into five (5) groups namely: One–Stage Estimators (OSE), 

Two–Stage Estimators (TSE), Feasible Generalized Least Square Estimators (FGLSE), Two-Process Estimators 

(TPE) and Modified Ridge Estimators (MRE). Monte Carlo experiments were conducted one thousand (1000) times 

on a linear regression model exhibiting different degrees of multicollinearity ( 0.4, 0.6, 0.8, 0.95 and 0.99) and 

autocorrelation ( ). However, the multicollinearity in this study is set to zero (λ = 0). 

This was examined for both normally and uniformly distributed regressors at sample sizes (n =10, 20, 30, 50, 100 and 

250). Finite sampling properties of estimators namely; Bias (BAS), Mean Absolute Error (MAE), Variance (VAR) 

and most importantly Mean Square Error (MSE) of the estimators were evaluated, examined and compared at each 

specified level of multicollinearity, autocorrelation and sample size by writing computer programs using Time Series 

Processor (TSP 5.0) statistical software. These were done by ranking the estimators on the basis of their performances 

according to the criteria so as to determine the best estimator. With normally distributed regressor, the best estimator 

is N-AUTOCOFGLSE-ML except at n=10. At this instance, N-AUTOCOFGRE-ML is the best. Also, at sample size 

of n=20, it is either (N-1)-AUTOCOFGLSE-CORC or OREKBAY that is best. With uniformly distributed regressor, 

the best estimator is N-AUTOCOFGLSE-ML/ML except at n=50. At this instance, (N-1)-AUTOCOFGLSE-

CORC/CORC is the best. Moreover, the GRE and N-AUTOCOFOREKBAY compete at small sample sizes, n=10 

and n=20 respectively. Generally, It can be observed from the results that the best estimator is either N-

AUTOCOFGLSE-ML/ML or (N-1)-AUTOCOFGLSE-CORC/CORC.  
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INTRODUCTION 

 

The term autocorrelation may be defined as “correlation 

between members of series of observations ordered in 

time [as in time series data] or space [as in cross-

sectional data].’’ In the regression context, the classical 

linear regression model assumes that such 

autocorrelation does not exist in the disturbances ui . 

Symbolically, E(ui uj) = 0  i ≠ j. The classical model 

assumes that the disturbance term relating to any 

observation is not influenced by the disturbance term 

relating to any other observation. For example, if we are 

dealing with quarterly time series data involving the 

regression of output on labor and capital inputs and if, 

say, there is a labor strike affecting output in one quarter, 

there is no reason to believe that this disruption will be 

carried over to the next quarter. That is, if output is lower 

this quarter, there is no reason to expect it to be lower 

next quarter. Similarly, if we are dealing with cross-

sectional data involving the regression of family 

consumption expenditure on family income, the effect 

of an increase of one family’s income on its 

consumption expenditure is not expected to affect the 

consumption expenditure of another family. However, if 

there is such a dependence, we have autocorrelation 

Formby et al. [1]. The inefficiency of Ordinary Least 

Square estimator to estimate the parameters of linear 

regression model in the presence of autocorrelation led 

to the development of Generalized Least Squares (GLS) 

estimator.  It requires the true autocorrelation value to 

be known which is not often so. Using the estimated 

autocorrelation value leads to the development of 

Feasible Generalized Least Squares (FGLS) estimators.  

Thus, studying the finite sample properties of these 

estimators becomes very imperative. This seems to be 

very difficult analytically Ayinde and Ipinyomi [2]. 

However, Monte Carlo approach is often utilized to 

accomplish this task. Cochrane and Orcutt [3], an 

economist, observed that the presence of autocorrelated 

error terms requires some modifications for the OLS 
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estimator to be used. Their suggestion involved an 

autoregressive transformation of the series involved and 

that the quasi first differences of such series should be 

used. Kadiyala [4] observed that the transformation 

suggested by [3] can lead to a less efficient estimator. 

He therefore suggested that the addition of one weighted 

observation to Cochrane Orcutt - CORC procedure may 

give a better estimator practically without any extra cost. 

Rao and Griliches [5] did one of earliest Monte Carlo 

investigations on this study. The estimators they 

examined include OLS, CORC, Two-Step estimators 

based on Durbin ρ̂ and Prais–Winsten. Their major 

conclusions were; the OLS estimator is less efficient 

than all other methods considered for moderate and high 

values of (|ρ|>0.3) and there is a definite gain from using 

feasible generalized least squares when |ρ|≥0.3 and little 

loss from using such methods otherwise. The work of 

[5] was revisited by Spitzer [6]; but in addition to the 

estimators considered by [5], he examined the 

performances of ML estimator. Situations where the two 

problems exist together in a data set are not uncommon. 

Therefore, this paper attempts to investigate the 

performances of the proposed estimators when 

autocorrelation alone is in the model through Monte 

Carlo studies. 

Though no precise definition of 

multicollinearity has been firmly established in the 

literature, multicollinearity is generally agreed to be 

present if there is an approximate degree of linear 

relationship among some of the predictor variables in 

the data. Bowerman and Connell [7] stated that the term 

multicollinearity refers to a situation in which there is an 

exact (or nearly exact) linear relation among two or 

more of the explanatory variables. Exact relations may 

arise by mistake or lack of understanding. 

Multicollinearity can also be defined in the concept of 

orthogonality.  When the predictors are orthogonal or 

uncorrelated, all eigenvalues of the design matrix are 

equal to one and the design matrix is of full rank. If at 

least one eigenvalue is different from one, especially 

when equal to zero or near zero, then non-orthogonality 

exists, meaning that multicollinearity is present. 

Multicollinearity can lead to increasing complexity in 

the research results, thereby posing difficulty for 

researchers to provide interpretation Charterjee et al. 

[8]. Regardless of whether multicollinearity in data is 

assumed to be a sampling problem or true reflection of 

population relationships, it must be looked into when 

data are analyzed using regression analysis because it 

has several potential undesirable consequences on the 

parameter estimates. When multicollinearity is a 

problem, parameter estimates have wrong signs when 

compared with theoretical knowledge and variables 

have insignificant coefficients. The regression 

coefficients, though determinate when multicollinearity 

is imperfect, possess large standard errors which imply 

that the coefficients cannot be estimated with great 

precision. Hawking and Gujarati [9, 10]. 

 Various other estimation methods have been developed 

to tackle this problem. These estimators include Stein 

estimator introduce by James[11], Ridge Regression 

estimator developed by Hoerl and Kennard [12], 

Estimator based on Principal Component Regression 

suggested by Massy[13] and method of Partial Least 

Squares developed by Wold[14]. Ayinde et al. [15] 

examined the performance estimators based on principal 

component regression, ML and Cochrane Orcutt. 

 

METHODOLOGY 

 

Estimators for handling autocorrelation 

Consider the Linear Regression Model with 

Autoregressive of order 1, AR (1) given as: 

yt =  β0 + β1 x1t + β2 x2t+……….+ βk xk-t + ut                              (1) 

Where ut= ρut−1  + εt 

Therefore, the variance – covariance matrix becomes: 

E(UU′) = 𝜎2Ω

= 𝜎2  

[
 
 
 
 
 
 

1 𝜌 𝜌2 ⋯ 𝜌𝑛−2 𝜌𝑛−1

𝜌 1 𝜌 ⋯ 𝜌𝑛−3 𝜌𝑛−2

𝜌2 𝜌 1 ⋯ 𝜌𝑛−4 𝜌𝑛−3

⋮ ⋮ ⋮ ⋯ ⋮ ⋮
𝜌𝑛−2 𝜌𝑛−3 𝜌𝑛−4 … 1 𝜌

𝜌𝑛−1 𝜌𝑛−2 𝜌𝑛−3 ⋯ 𝜌 1 ]
 
 
 
 
 
 

 

                                                                     (2) 

 

      and  σ2 = σu
2  = 

σv
2

(1−ρ2)
, 

      and the inverse of  Ω is given as: 

 

            Ω−1 =

1

1−𝜌2  

[
 
 
 
 
 

1 −𝜌 0 ⋯ 0 0

−𝜌 1 + 𝜌2 −𝜌 ⋯ 0 0

0 −𝜌 1 + 𝜌2 ⋯ 0 0
⋮ ⋮ ⋮ ⋯ ⋮ ⋮
0 0 0 … 1 + 𝜌2 −𝜌
0 0 0 ⋯ −𝜌 1 ]

 
 
 
 
 

       (3)      

We now search for a suitable transformation 

matrix P*. If we consider first a (n-1) x n matrix 

P* defined as: 

                    P∗ =

[
 
 
 
 
−𝜌 1 0 ⋯ 0 0
0 −𝜌 1 ⋯ 0 0
0 0 −𝜌 ⋯ 0 0
⋮ ⋮ ⋮ ⋯ ⋮ ⋮
0 0 0 ⋯ −𝜌 1]

 
 
 
 

          (4) 

 By multiplication, it then shows that P*′P* gives an n x 

n matrix which apart from a proportional  

constant is identical with Ω-1 except for the first elements 

in the leading diagonal. 

Now if we consider an n x n matrix P obtained from P* 

by adding a new row to the first row  
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with √1 − ρ2 in the first position and zero elsewhere, 

that is  

P =

[
 
 
 
 
 (1 − 𝜌2)

1

2 0 0 ⋯ 0 0
−𝜌 1 0 ⋯ 0 0
0 −𝜌 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋯ ⋮ ⋮
0 0 0 ⋯ −𝜌 1]

 
 
 
 
 

                    (5)                                           

The difference between P* and P lies only in the 

treatment of the first sample observation. P* is much 

easier to use provided we are prepared to lose 

information on the first observation. However, when n 

is large, the difference is negligible, but in small sample, 

the difference can be major. Moreover, there is need for 

Ω or more precisely ρ to be known for the GLS via the 

transformation matrix P* and P to be used. This is not 

often the case; we resort to estimating Ω by Ω̂ to have 

Feasible Generalized Least Squares estimator (FGLSE). 

There are several ways of consistently estimating  ρ , 
after which either the P* or P transformation matrix can 

be used. 

The estimators are to handle autocorrelation 

are: 1. Cochrane and Orcutt Estimator (CORC): Iterative 

Procedure, 2. Maximum Likelihood Estimator (ML) 

 

Estimators for handling multicollinearity  

generalized ridge estimator 

The generalized ridge estimator of β is given as   𝛽̂𝑘 =
(X′X + KI)−1X′Y where K is a diagonal matrix with non 

negative diagonal elements (K1, K2, … , Kp). The Ki(i =

1,2, … , p) need not be equal. The optimum value of K 

had been obtained by [12] as: 

 

K = 
σ2

αi
2  ;  i = 1,2,3,… , p.                              (6)

  

Since σ2 and αi
2 are generally unknown, the Ki needs to 

be estimated. Hoerl et.al (1975) suggested the 

replacement of σ2 and αi
2 by their corresponding 

unbiased estimators σ̂2and α̂i
2. Therefore, K̂i =

σ̂2

α̂i
2 

where σ̂2 =
∑ ei

2n
i=1

n−p
. (The estimated error variance from 

OLS estimation) and αi
2 is the regression coefficient 

from OLS estimation. 

 

The ordinary ridge estimator 

The Ordinary ridge regression (ORR) estimator requires 

a fixed value of the ridge Parameter, K.  Several Ks have 

also been proposed by authors including [12] and that of 

[16] respectively given as: 

                             K̂HK = 
 𝜎̂2

Max(𝛼̂)2
                   (7) 

                  K̂LA =  
 𝜎̂2

[Max(𝛼̂)]2
             (8) 

Sclove [17] suggested an empirical K-Bayesian Ridge 

Parameter given as:  

         K̂BAY =     
(SSR/n−p)

(∑ y2  −SSR/ trace(XʹX)) 
             (9)                                   

Where SSR = Sum of Square of Regression 

 

The proposed estimators: 

The proposed estimators were classified into 

three (3) groups and are presented as follows: 

1. Two–Stage Estimators (TSE): The 

discussion requiring an (n x n) or (n-1 x n) non-

singular Matrix P for GLSM transformation, 

the true autocorrelation value (  ) was used to 

obtain the Matrix P to transform the data. Thus, 

the following estimators are proposed. The 

algorithms required are as follows: 

(N-1)-Autocorrelation Corrected 

Generalized Least Square Estimators  

[(N-1)-AUTOCOGLSE]: 

This estimator requires using (n-1) x n matrix 

P to transform the data. It can also be referred 

to as Generalized Least Square Estimator.  The 

procedures are as follows:  

i. Transform the data using true 

autocorrelation value. 

ii. Apply OLS estimator on the 

transformed data to obtain the estimates of the 

parameters of the regression model. 

NOTE: Since these estimators require the use 

of true autocorrelation values, therefore, they 

do not find relevance in practice. 

2. Two – Process Estimators (TPE): In Practice, 

the true autocorrelation value is not known. 

These estimators are proposed by using the 

estimated autocorrelation value resulting from 

known Feasible Generalized Least Square 

Estimator to transform the data before any 

other estimator is applied. The estimators and 

algorithms required are as follows: 

3. Modified Ridge Estimators: 

The ridge estimators discussed require 

estimation of 𝐾𝑖 =
𝜎̂2

𝛼̂𝑖
2  where, 

2


  is the Mean Square Error based 

on OLS estimation 
2

i


 is the regression coefficient i 

based on OLS estimation, i = 

1,2.........p. 

Now, since there is autocorrelation problem, using OLS 

estimator is inappropriate. It underestimates the variance 

of the regression co-efficient and the MSE is biased and 

inconsistent of 𝜎2 [18]. The proposed estimators used 

the appropriate estimators, CORC and ML, to obtain 

MSE and the regression coefficients. These result into 

the following proposed estimators. The algorithms 

required are as follows: 
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Model formulation 

Consider the linear regression model given as: 

𝑦𝑡 = 𝛽0 + 𝛽1𝑥1𝑡 + 𝛽2𝑥2𝑡 + 𝛽3𝑥3𝑡 + 𝜇𝑡           (10)

                                      

Where,  𝜇𝑡 = 𝜌𝜇𝑡−1 + 𝜀𝑡,  |𝜌| < 1,     

𝑡 = 1,2, , … …… …𝑛,     𝜀𝑡~ 𝑁 (0, 𝜎2). 

The regressors are fixed and exhibit different degree of 

multicollinearity. 

 

The Monte Carlo Experiments 

The experiment was replicated (R) one thousand time 

(1000) and at sample sizes of 

 n = 10,20,30,50,100 and 250. 

 

Generation of Data: Generation of the Explanatory 

Variables 

a. Correlated Normally distributed Variables 

The equations provided and used by [19] were used 

to generate normally distributed random variables 

with specified inter-correlation. With p = 3, the 

equations are: 

 𝑋1 = 𝜇1 + 𝜎1𝑧1    

                                          (11) 

 𝑋2 = 𝜇2 + 𝜆12𝜎12 + √𝑚22𝑧2  

                                        (12) 

 𝑋3 = 𝜇3 + 𝜆13𝜎3𝑧1 +
𝑚23

√𝑚22
+ √𝑛33𝑧3  

                             (13) 
 where, 

 𝑚22 = 𝜎2(1 − 𝜆12
2 ) 

 𝑚23 = 𝜎2𝜎3(𝜆23 − 𝜆12𝜆13) 

 𝑚33 = 𝜎2(1 − 𝜆13
2 ) 

 and 𝑛33 = 𝑚33 −
𝑚23

2

𝑚22
 ; and  𝑧𝑖~𝑁(0,1), 

𝑖 = 1 , 2 , 3 

By these equations, the inter-correlation matrix 

has to be positive definite among the 

independent variables. 

In the simulation,  

  12 =   13 =  23 =  = 

 0.4, 0.6, 0.8, 0.95 𝑎𝑛𝑑 0.99;  𝑎𝑛𝑑  𝑥𝑖~𝑁(0,1), 

𝑖 = 1 , 2 , 3  

 The research set (λ=0) 

b. Correlated Uniformly Distributed Variables 

Using the generated correlated normally distributed 

variables above,  𝑥𝑖~𝑁(0,1),      
  𝑖 = 1 , 2 , 3 ; the study further utilized the 

properties of random variables that cumulative 

distribution function of normal distribution produce 

U(0,1) without affecting the correlation among 

variables to generate correlated uniform distributed 

variables  𝑥𝑖~𝑈(0,1),     𝑖 = 1 , 2 , 3 [20] 

c. Generation of the error term 

The error terms were generated by using the 

distributional properties of the autocorrelation error 

terms of AR (1) model given as:  

   𝑢𝑡  ~ 𝑁 (0,
σe

2

(1−ρ2)
)              (14) 

Thus, assuming the model start from infinite 

past, the error terms were generated as 

 follows: 

u1  =  
𝜀1

√1 −𝜌2
             (15) 

 𝑢𝑡 = 𝜌𝑢𝑡−1 + 𝜀𝑡,                 (16) 

                𝑡 =  2 ,3,4 …… … . 𝑛             

In this study, autocorrelation value  (𝜌) is 

varied from 0.4, 0.8, 0.95, and 0.99. 

d. Generation of Dependent Variable 

The model parameter values were taken as  𝛽0 =
 0,  𝛽1= 0.8,  𝛽2 = 0.1 and 𝛽3 = 0.6 . Thus, 

the dependent variable was also determined. Data 

were therefore generated for all the specifications of 

different combinations of multicollinearity, 

autocorrelation and sample size; a total of one 

hundred and twenty (120) different combinations 

(6x5x4) all together. 

 

Estimation methods used in the study 

They were categorized into five groups as follows: 

1. One – Stage Estimator (OSE): 

These are existing estimation techniques that 

require only one stage in their estimation 

procedures. They are given as follows:  

i. Ordinary Least Squares Estimator 

     (OLSE) 

ii. Generalized Ridge Estimator (GRE) 

iii. Ordinary Ridge Estimator with K –     

Bayesian (OREKBAY) 

iv. Ordinary Ridge Estimator with K-

Lukman and Ayinde (OREKLA) 

2. Two -Stage Estimators (TSE): These are: 

i. (N-1)-Autocorrelation Corrected 

Generalized Least Square Estimators  

ii.  (N-1) –AUTOCOGLSE]: 

iii. (N-1)-Autocorrelation Corrected 

Generalized Ridge Estimators  

[(N-1) –AUTOCOGRE]: 

and others remaining estimators 

3. Feasible Generalized Least Square 

Estimators (FGLSE): These are existing 

estimators: 

i. Corchran Orcutt Estimator (CORC) 

ii. Maximum Likelihood Estimator 

(ML) 

4. Two- Process Estimators (TPE): 

These are: 

i. (N-1) - Autocorrelation Corrected 

Feasible Generalized Least Square 

Estimators [(N-1) -AUTOCOFGLSE-

CORC]: 
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ii. (N-1) - Autocorrelation Corrected 

Feasible Generalized Ridge 

Estimators  

[(N-1) -AUTOCOFGRE-CORC]: and 

others remaining estimators 

5. Modified Ridge Estimators (MRE): These 

are:  

i. Cochrane Orcutt Modified 

Generalized Ridge Estimator 

(CORCMGRE) 

ii. Cochrane Orcutt Modified Ordinary 

Ridge Estimator-KBAY 

(CORCMORE-KBAY) and others 

remaining estimators 

 

Criteria for Evaluation, Examination and 

Comparison of the estimators 

Evaluation, examination and comparison of the 

estimators were done based on their finite sampling 

properties. These include Bias closest to zero (BAS), 

Mean Absolute Error (MAE), Variance (VAR) and 

Mean Square Error (MSE) defined as follows: 

i. 𝛽̂i  = 
1

1000
∑ 𝛽̂𝑖𝑗

1000
𝑗=1            (17) 

ii.BAS(𝛽̂i) = ⃒
1

1000
∑  ( 𝛽̂𝑖𝑗

1000
𝑗=1  - 𝛽𝑖) ⃒       (18) 

iii.MAE (𝛽̂i) = 
1

1000
∑ ⃒𝛽̂𝑖𝑗

1000
𝑗=1 − 𝛽𝑖  ⃒       (19)   

iv.VAR(𝛽̂i)=
1

1000
∑ ( 𝛽̂𝑖𝑗

1000
𝑗=1 - ˆ

i )2(20)                      

v.MSE(𝛽̂i)=Bias(𝛽̂i)2+Var(𝛽̂i)                  (21) 

 

                                                  

RESULTS AND DISCUSSIONS 

 

Results when there is Autocorrelation alone in the 

model 

Samples of results from simulation study and the 

summary of the best estimator(s) when there is 

autocorrelation alone in the model are presented as 

follows: 

 

 

 

 

 

 

 

 

Samples of results from Simulation Study 

Samples of simulation results obtained on the estimators 

under the mean square error criterion with both normally 

and uniformly distributed regressors when there is only 

autocorrelation problem (ρ=0.95) at small sample size 

(n=10) are given in Table 1  

Form Table 1, it can be observed that the results of 

OREKBAY, GRE, N-AUTOCOFGRE, N-

AUTOCOGRE, MLMGRE and MLMOREKLA are the 

preferred estimators. The estimators N-

AUTOCOFGRE-ML and N-AUTOCOFGLSE-ML are 

the choice estimators with respect to normal and 

uniform regressors respectively. Similarly, the results of 

CORC and (N-1)-AUTOCOFGLSE-CORC, ML and N-

AUTOCOFGLSE-ML are either the same or 

approximately the same. With normally distributed 

regressors, the preferred estimator among the OSE is 

OREKBAY, among the TSE is N-AUTOCOGRE, 

among the TPE is N-AUTOCOFGRE-ML, among the 

FGLSE is ML and among the MRE is MLMGRE or 

MLMOREKLA. Moreover, with uniformly distributed 

regressors, the preferred estimator among the OSE is 

GRE, among the TSE is N-AUTOCOGLSE, among the 

TPE is N-AUTOCOFGLSE-ML, among the FGLSE is 

ML and among the MRE is MLMGRE.  With normal 

regressor, the choice estimator is N-AUTOCOFGRE-

ML while with uniform regressor the choice estimator is 

N-AUTOCOFGLSE-ML/ML. The estimators GRE, 

MLMOREKLA and MLMGRE compete favorably. 
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Table 1: Mean Square Error of the Estimators when =0.95, =0 and n=10 

     MB1       MB2       MB3 

    

RMB1 RMB2 RMB3 SRMB ESTIMATOR CAT      Ρ N 

   

λ REGRESSOR 

1.53389 0.79363 4.61857 21 24 28 73 

 

OLS OSE 0.95 10 0 NORMAL 

2.32419 0.24476 1.90653 25 4 14 43 GRE OSE 0.95 10 0 NORMAL 

0.77236 0.48474 3.24124 7 12 23 42 OREKBAY OSE 0.95 10 0 NORMAL 

0.81695 0.53279 3.21905 10 13 22 45 OREKLA OSE 0.95 10 0 NORMAL 

1.23457 0.7238 0.9652 17 22 4 43 (N-1)-AUTOCOGLSE TSE 0.95 10 0 NORMAL 

0.62908 0.2022 0.75997 2 1 2 5 (N-1)-AUTOCOGRE TSE 0.95 10 0 NORMAL 

0.80058 0.24465 1.071 9 3 8 20 

(N-1)-

AUTOCOOREKBAY TSE 0.95 10 0 NORMAL 

0.77262 0.28832 1.18647 8 8 9 25 

(N-1)-

AUTOCOOREKLA TSE 0.95 10 0 NORMAL 

1.16719 0.66823 0.96415 16 18 3 37 N-AUTOCOGLSE TSE 0.95 10 0 NORMAL 

0.58997 0.21089 0.75935 1 2 1 4 N-AUTOCOGRE TSE 0.95 10 0 NORMAL 

0.71735 0.25025 1.0479 5 5 6 16 

N-

AUTOCOOREKBAY TSE 0.95 10 0 NORMAL 

0.66997 0.29151 1.06913 3 9 7 19 N-AUTOCOOREKLA TSE 0.95 10 0 NORMAL 

3.43565 1.14463 2.85627 27.5 25.5 18.5 71.5 

(N-1)-

AUTOCOFGLSE-

CORC TPE 0.95 10 0 NORMAL 

1.38916 0.69053 1.04263 20 21 5 46 

(N-1)-

AUTOCOFGRE-

CORC TPE 0.95 10 0 NORMAL 

0.90138 63.76577 3.83651 13 28 26 67 

(N-1)-

AUTOCOFOREKBAY TPE 0.95 10 0 NORMAL 

1.60578 0.78417 1.61637 24 23 11 58 

(N-1)-

AUTOCOFOREKLA TPE 0.95 10 0 NORMAL 

1.26436 0.66848 1.86007 18.5 19.5 12.5 50.5 

N-AUTOCOFGLSE-

ML TPE 0.95 10 0 NORMAL 

0.77008 0.26508 1.28579 6 6 10 22 

N-AUTOCOFGRE-

ML* TPE 0.95 10 0 NORMAL 

3.11847 27.43539 3.59907 26 27 24 77 

N-

AUTOCOFOREKBAY TPE 0.95 10 0 NORMAL 

0.67526 0.44029 1.94111 4 11 15 30 

N-

AUTOCOFOREKLA TPE 0.95 10 0 NORMAL 
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3.43565 1.14463 2.85627 27.5 25.5 18.5 71.5 CORC FGLSE 0.95 10 0 NORMAL 

1.26436 0.66848 1.86007 18.5 19.5 12.5 50.5 ML FGLSE 0.95 10 0 NORMAL 

1.53915 0.36982 2.23012 23 10 17 50 CORCMGRE MRE 0.95 10 0 NORMAL 

0.96817 0.62569 3.8975 15 17 27 59 CORCMOREKBAY MRE 0.95 10 0 NORMAL 

0.96278 0.61286 3.13629 14 16 21 51 CORCMOREKLA MRE 0.95 10 0 NORMAL 

1.53415 0.26674 2.03878 22 7 16 45 MLMGRE MRE 0.95 10 0 NORMAL 

0.88871 0.58627 3.7206 12 15 25 52 MLMOREKBAY MRE 0.95 10 0 NORMAL 

0.83055 0.56629 2.96164 11 14 20 45 MLMOREKLA MRE 0.95 10 0 NORMAL 

0.7189 0.17482 0.30935 28 28 28 84 OLS OSE 0.95 10 0 UNIFORM 

0.32784 0.097888 0.18005 16 22 16 54 GRE OSE 0.95 10 0 UNIFORM 

0.36202 0.093734 0.20907 18 21 21 60 OREKBAY OSE 0.95 10 0 UNIFORM 

0.37873 0.10677 0.19928 22 23 20 65 OREKLA OSE 0.95 10 0 UNIFORM 

0.10719 0.054859 0.076749 2 2 2 6 (N-1)-AUTOCOGLSE TSE 0.95 10 0 UNIFORM 

0.36438 0.065795 0.17404 19 8 15 42 (N-1)-AUTOCOGRE TSE 0.95 10 0 UNIFORM 

0.29488 0.070701 0.16234 9 11 11 31 

(N-1)-

AUTOCOOREKBAY TSE 0.95 10 0 UNIFORM 

0.29643 0.076136 0.1624 10 17 12 39 

(N-1)-

AUTOCOOREKLA TSE 0.95 10 0 UNIFORM 

0.10648 0.054765 0.072952 1 1 1 3 N-AUTOCOGLSE TSE 0.95 10 0 UNIFORM 

0.37128 0.062971 0.15564 20 4 10 34 N-AUTOCOGRE TSE 0.95 10 0 UNIFORM 

0.30604 0.067545 0.14509 12 9 5 26 

N-

AUTOCOOREKBAY TSE 0.95 10 0 UNIFORM 

0.30888 0.072598 0.14567 14 12 6 32 N-AUTOCOOREKLA TSE 0.95 10 0 UNIFORM 

0.16557 0.073339 0.16431 5.5 13.5 13.5 32.5 

(N-1)-

AUTOCOFGLSE-

CORC TPE 0.95 10 0 UNIFORM 

0.3403 0.07641 0.19675 17 18 18 53 

(N-1)-

AUTOCOFGRE-

CORC TPE 0.95 10 0 UNIFORM 

0.30739 0.075532 0.18922 13 16 17 46 

(N-1)-

AUTOCOFOREKBAY TPE 0.95 10 0 UNIFORM 

0.31002 0.082219 0.19775 15 19 19 53 

(N-1)-

AUTOCOFOREKLA TPE 0.95 10 0 UNIFORM 

0.11856 0.065066 0.079896 3.5 6.5 3.5 13.5 

N-AUTOCOFGLSE-

ML* TPE 0.95 10 0 UNIFORM 
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0.30148 0.059949 0.15269 11 3 9 23 

N-AUTOCOFGRE-

ML TPE 0.95 10 0 UNIFORM 

0.25674 0.064064 0.14729 8 5 7 20 

N-

AUTOCOFOREKBAY TPE 0.95 10 0 UNIFORM 

0.25184 0.069626 0.15109 7 10 8 25 

N-

AUTOCOFOREKLA TPE 0.95 10 0 UNIFORM 

0.16557 0.073339 0.16431 5.5 13.5 13.5 32.5 CORC FGLSE 0.95 10 0 UNIFORM 

0.11856 0.065066 0.079896 3.5 6.5 3.5 13.5 ML FGLSE 0.95 10 0 UNIFORM 

0.38711 0.083424 0.24345 23 20 23 66 CORCMGRE MRE 0.95 10 0 UNIFORM 

0.65463 0.15811 0.28969 27 27 27 81 CORCMOREKBAY MRE 0.95 10 0 UNIFORM 

0.54365 0.14198 0.26347 25 25 25 75 CORCMOREKLA MRE 0.95 10 0 UNIFORM 

0.37225 0.073944 0.23863 21 15 22 58 MLMGRE MRE 0.95 10 0 UNIFORM 

0.64785 0.15681 0.28636 26 26 26 78 MLMOREKBAY MRE 0.95 10 0 UNIFORM 

0.51382 0.13794 0.25227 24 24 24 72 MLMOREKLA MRE 0.95 10 0 UNIFORM 

 

Notes:  (i) Preferred Estimator is bolded  

 (ii) Choice estimator is bolded and asterisked 
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Table 2: Summary of the best estimators on the basis of criteria at different sample sizes with normally and uniformly 

distributed regressors when autocorrelation alone is in the model 
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From Table 2, the following are observed about the best estimators under Mean Square Error criteria. 
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Mean Square Error 

i. With normally distributed regressor, the best estimator is N-AUTOCOFGLSE-ML except at n=10. 

At this instance, N-AUTOCOFGRE-ML is the best. Also, at sample size of n=20, it is either (N-1)-

AUTOCOFGLSE-CORC or OREKBAY that is best. Also, at various sample sizes, the (N-1)-

AUTOCOFGLSE-CORC does compete with the best estimator. This is presented pictorially in 

Figure 1A. 

ii. With uniformly distributed regressor, the best estimator is N-AUTOCOFGLSE-ML/ML except 

n=50. At this instance, (N-1)-AUTOCOFGLSE-CORC/CORC is the best. Moreover, the GRE and 

N-AUTOCOFOREKBAY compete at small sample sizes, n=10 and n=20 respectively. The 

frequency of the choice estimators at various sample sizes is presented pictorially in Figure 1B. 

The best estimator is either N-AUTOCOFGLSE-ML/ML or (N-1)-AUTOCOFGLSE-CORC/CORC.  

 

 
Figure 1A: Compound Bar Chart of Choice Estimators with Normally Distributed   

 Regressors when Autocorrelation alone is in the model (MSE Criterion) 
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Figure 1B: Compound Bar Chart of Choice Estimators with Uniformly Distributed   

 Regressors when Autocorrelation alone is in the model (MSE Criterion) 

 

CONCLUSION 

 

It can be observed from the results that best estimator is 

either N-AUTOCOFGLSE-ML/ML or (N-1)-

AUTOCOFGLSE-CORC/CORC. These results support 

the findings by Rao and Grilliches (1969), Ayinde and 

Ipinyomi (2007) and Ayinde, Lukman and Arowolo 

(2015). With normally distributed regressor, the best 

estimator is N-AUTOCOFGLSE-ML except at n=10. At 

this instance, N-AUTOCOFGRE-ML is the best. Also, 

at sample size of n=20, it is either (N-1)-

AUTOCOFGLSE-CORC or OREKBAY that is best. 

With uniformly distributed regressor, the best estimator 

is N-AUTOCOFGLSE-ML/ML except at n=50. At this 

instance, (N-1)-AUTOCOFGLSE-CORC/CORC is the 

best. Moreover, the GRE and N-AUTOCOFOREKBAY 

compete at small sample sizes, n=10 and n=20 

respectively. 

 

REFERENCES 

 

1. FORMBY, T.B., HILL, R.C. & JOHNSON, S.R. 

(1984). Advance Econometric Methods. 

Springer-Verlag, New York, Berlin, 

Heidelberg, London, Paris, Tokyo. 2nd 

Edition. 

2. AYINDE, K. & IPINYOMI, R.A. (2007). A 

comparative study of the OLS and some GLS 

estimators when normally distributed 

regressors are stochastic. Trend in Applied 

Sciences Research, 2(4): 354-359. 

3. COCHRANE, D. & ORCUTT, G.H. (1949). 

Application of Least Square to relationship 

containing autocorrelated error terms. Journal 

of American Statistical Association, 44: 32–61. 

4. KADIYALA, K.R. (1968). Testing for the 

independent of Regression Disturbances, 

ECTRA, 38: 71-117 

5. RAO, P. & GRILICHES, Z. (1969). Small sample 

properties of several two-stage regression 

methods in the context of autocorrelation error. 

Journal of American Statistical Association, 

64, 251 – 272. 

6. SPITZER, J.J. (1979). A Monte Carlo investigation of 

the (Box-Cox) transformation in small 

samples. Journal of the America Statistical 

Association. 73: 488-495 

7. BOWERMAN, B. L. & O‟ CONNELL, R. T. (2006). 

Linear Statistical Models and Applied 

Approach, Boston. PWS-KENT Publishing. 4th 

Edition. 

8. CHARTTERJEE, S., HADI, A.S. & PRICE, B. 

(2000). Regression by Example, 3rd Edition. A 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

10 20 30 50 100 250

Fr
e

q
u

e
n

cy
 o

f 
C

h
o

ic
e

 E
st

im
at

o
r

Sample Sizes

GRE N-AUTOCOFOREKBAY N-AUTOCOFGLSE-ML (N-1)-AUTOCOFGLSE-CORC



Bello (2022); A simulation study to determine the best estimators for solving problems 

Nigerian Journal of Scientific Research, 21(1): 2022; January–June; journal.abu.edu.ng; ISSN-0794-0378           45 

Wiley-Interscience Publication, John Wiley 

and Sons. 

9. HAWKING, R.R. & PENDLETON, O.J. (1983). The 

regression dilemma. Commun. Stat.-Theo. 

Meth.12: 497-527. 

10. GUJARATI, D.N. & PORTER, D.C. (2009). Basic 

Econometrics. Mc Graw-Hill, New York. 5th 

Edition. 

11. JAMES, S. (1956). Inadmissibility of the usual 

estimator for the mean of a Multivariate 

Distribution.  Proc. Third 

Berkelysymp.math.statist.prob.197-206 

12. HOERL, AE. & KENNARD, R.W. (1970). Ridge 

regression biased estimation for non-

orthogonal problems, Technometrics, 8: 27 – 

51. 

13. MASSEY, W.F. (1965). Principal Component 

Regression in exploratory statistical research. 

Journal of the American Statistical 

Association, 60: 234– 246. 

14. HERMON WOLD, H. (1966). Estimation of 

principal component and related model by 

iterative Least Squares. In P.R. Krishnainh [ed] 

Multivariate Analysis. New York Academic 

Press, 391-420. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15. AYINDE, K., APATA, E.O. & ALABA, O.O. 

(2012). Estimators of Linear Regression Model 

and Prediction under some Assumptions 

Violation. Open Journal of Statistics, 2: 534 – 

546. 

16. AYINDE, K., LUKMAN, A.F. & AROWOLO, O.T. 

(2015). Combined Parameters Estimation 

methods of Linear Regression Model with 

Multicollinearity and Autocorrelation. Journal 

of Asian Scientific Research, 5(5): 243-250. 

17. SCLOVE, S. (1973). Improved estimators for 

coefficient in Linear regression. Journal of 

American Statistical Association 63: 596-606 

18. JOHNSTON, J. (1984). Econometric Methods. 3rd 

Edition, New York, Mc, Graw Hill. 

19. AYINDE, K. & ADEGBOYE, O.S. (2010). 

Equations for generating normally distributed 

random variables with specified 

intercorrelation. Journal of Mathematical 

Sciences, 21(2): 183–203. 

20. SCHUMANN, E. (2009). Generating Correlated 

Uniform Variate. http:// comisef.wikidot.com / 

tutorial: correlateduniformvariate. 


