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ABSTRACT 

Energy limitation is a major constraint affecting the performance of a WSN due to the limited 

energy of the nodes. The sensor nodes are mostly battery-powered and are deployed in remote 

or hostile surroundings, whereby it is difficult to recharge or replace the batteries regularly. 

Thus, hindering their ability to carry out their functions efficiently. As such, reducing energy 

consumption and prolonging the lifetime of the nodes becomes necessary. In this paper, an 

energy-efficient routing algorithm was developed utilizing the spectral graph-partitioning 

technique based on Normalized cut (Ncut) that optimally partitioned the network into clusters 

(grids). An unequal clustering mechanism for mitigating the hotspot problem was 

incorporated into the routing algorithm. The algorithm was implemented in MATLAB 

R2018a and was evaluated using network lifetime, energy consumption, and some alive nodes 

as performance metrics. Simulations were carried out in two scenarios, and results showed 

that AGMRP outperformed other algorithms. 

 

 . 

1. INTRODUCTION 

A homogeneous Wireless Sensor Network (WSN) is a 

network that has nodes with the same storage, energy, 

processing and communication capabilities. The sensor 

nodes perform sensing, processing, and wireless 

communication [15]. They are equipped with low battery 

power and are often deployed in a hostile environment [5]. 

Energy limitation is one of the key constraints affecting the 

performance of a WSN, because of the limited energy of the 

nodes. The battery-powered nature and deployment mostly 

in a hostile environment whereby it is difficult to replace or 

recharge the batteries hinder their ability to carry out function 

efficiently. Design of energy-efficient routing protocols, 

regular battery replacement, and energy harvesting from 

natural sources are some of the ways employed to alleviate 

the effect of energy limitation in WSNs [6]. Harvesting 

natural sources are totally climatic-dependent; their energy 

source is potentially sporadic [10] [2] and, therefore seems 

unreliable. The use of energy harvesting often requires 

management schemes for efficient usage of the harvested 

energy, hence becomes expensive. The management 

schemes are meant to overcome the energy output 

insufficiency due to temporal variation in supply [3]. Due to 

the deployment of sensor nodes mostly in a hostile 

environment where it is difficult to replace the battery, and 

the high cost and unreliability for energy harvesting; 

designing efficient routing protocols seems to be more 

preferable. In designing routing protocols, clustering 

methods have been employed to tackle problems of limited 

energy of the nodes [31] [7]. The process optimizes energy 

consumption, aggregate data, and enhances network lifetime 

[24]. A crucial goal in WSN for efficient design of routing 

protocol is minimizing the network power consumption, 

which comprises reducing the overall energy exhausted in 

the network, the amount of data transmission, and balancing 

the energy load among nodes in the network [5]. 

Due to the distinctive features of WSNs, routing protocols 

are expected to have the following properties [5]: 

1. Scalability: - The routing protocols should function in 

an extensive network efficiently, even with an increased 

amount of nodes. 

2. Efficiency: - The routing protocols should be efficient in 

terms of energy and time, due to the intense energy 

limitation of the network and their time-dependent 

application scenarios. 

3. Fault tolerance: - Sensor network should continue to be 

operational for quite a long time despite the failure of 

some nodes. 

To tackle the problem of energy limitation of sensor nodes 

and deployment issues in a WSN, clustering methods have 
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been a promising alternative [31] [26] [29]. Clustering is 

more challenging in a homogeneous WSN because the CH 

nodes are selected from sensor nodes with the same energy 

level, storage, and processing capabilities. But in the case of 

a heterogeneous WSN, there are different sensor nodes, and 

a less energy-constraint node can be selected as the CH node. 

A lot of energy-efficient routing protocols have been 

developed for WSN. However, there is still a need to explore 

new ways of designing efficient protocols that will utilize the 

limited energy of the nodes. Therefore, this research 

proposed an energy-efficient routing protocol using graph 

partitioning technique to segment the network into clusters, 

in order to minimize energy consumption and balance loads 

among the sensor nodes with a view to extend the network 

lifetime. Network partitioning and cluster formation were 

treated as a graph-partitioning problem, and the graph was 

segmented using the concept of normalized cut (Ncut) 

proposed by [24]. The Ncut criterion measures the 

disconnectedness between clusters and the togetherness of 

sensor nodes within groups. Several parameters were 

considered in the selection of functional nodes to reduce the 

total energy required by the nodes to send messages. 

Reducing the overall energy consumed by the sensor network 

per round is a challenge in WSN, and can be attained through 

optimal cluster formation. 

Most designs of routing algorithms in a WSN do not consider 

the effect of hotspot problems that may result in a network 

partition. Hotspot problem is a condition that often results in 

isolation or network partition due to unbalanced energy 

consumption [5] [22]. It reduces the network lifetime [32]; as 

such, it is a critical point of focus when considering energy 

efficiency in WSNs. Hotspot problem occurs in both single-

hop and multi-hop communication. In addition to achieving 

energy efficiency in the network, it is also necessary to 

mitigate the hotspot problem. To address the hotspot 

problem, an unequal clustering mechanism was used. The 

grid sizes were varied based on the distance to the base 

station, in such a way that clusters closer to the base station 

have smaller dimensions than those that are farther away, to 

overcome the energy over-consumption around the base 

station. 

  2.  RELATED WORKS 

The significant results related to this research can be studied 

in the literature. 

In [10], an energy-efficient protocol referred to as Low 

Energy Adaptive Clustering Hierarchy (LEACH) for 

wireless microsensor networks was proposed. It is the 

pioneer hierarchical routing protocol. To distribute the 

energy load evenly among the sensor nodes, randomization 

was used in selecting the CH node. The protocol showed 

significant improvement in system lifetime and reduction in 

energy dissipation. However, it may result in a non-uniform 

distribution of CH nodes and a low clustering setup due to 

random CH nodes selection. Moreover, the use of the single-

hop transmission is not ideal for large scale WSN because 

nodes that are farther away from the base station tends to 

deplete their energy faster, resulting in hotspot problem. 

In [8], a method for designing routing protocol in WSNs 

named Spectral Classification based on Near-Optimal 

Clustering was developed. The protocol was established 

using spectral division for segmenting the network into two 

different clusters. The algorithm extended network lifetime 

and reduced the energy consumed. However, the method 

cannot segment the network into any desired number of 

clusters. Also, the critical hotspot problem due to multi-hop 

routing that may cause early depletion of nodes close to the 

base station because of inter-cluster transmission was not 

addressed in the development of the protocol.  

In [33], a clustering technique for WSN based on minimum 

hop was proposed. The minimum hop value obtained by each 

node was used to obtain the communication radius. The 

aggregated data were transferred by the CH via multi-hop 

transmission, using the direction of the minimum hop 

gradient.  All the nodes knew their neighbors and thus 

calculated their weight. The algorithm balanced energy 

consumption and increased network survival time. However, 

the node residual energy was not considered in CH selection. 

Therefore, there is a high tendency that a low energy node 

would be chosen as CH, which might result in an energy hole 

problem. 

In [30], a clustering-based algorithm that is energy saving for 

a wide-ranging WSN that reduces power consumption was 

developed. The protocol selected CHs considering 

deployment information about the node, the degree of a node, 

residual energy, and distance from the base station. The 

algorithm extended the network lifetime and improved the 

network coverage. However, CHs forwarded data to the base 

station directly using single-hop transmission, and it is not 

ideal for use in the large-scale network because CH nodes 

that are much afar from the base station are more likely to 

expend all their energy faster, causing network partition. 

In [27], a new clustering approach for WSN that is energy-

efficient and distribution independent was developed. The 

clustering problem was considered in both uniform and non-
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uniformly distributed networks. The algorithm is a fuzzy 

clustering algorithm that used local decision to determine the 

competition radius of nodes and elect tentative and final CH 

nodes. They considered nodes remaining energy, node 

density, and distance to the base station in the selection of 

CH nodes. The algorithm was evaluated in four scenarios. 

The performance of the algorithm was experimentally 

evaluated and has shown better results compared to some 

existing algorithms. However, the CH nodes were randomly 

selected before screening them for final selection based on 

competition range and rank, and random selection might 

result in the selection of a low energy node in a cluster as CH. 

In [12], an enhanced protocol that adopts multi-hop routing 

for a homogeneous WSN was proposed. The protocol 

divided the CH nodes into internal and external CHs 

depending on their distance to the base station. Internal CH 

served as relay nodes to external CH nodes. The protocol 

balanced the network energy consumption and efficiently 

prolonged its lifetime. However, the developed protocol does 

not consider nodes' energy level during the process of CH 

selection, which can result in the problem of the energy hole 

when a sensor node with lesser energy is selected as CH. 

In [1], a fuzzy-based unequal clustering algorithm named 

FUCA was proposed. The algorithm formed unequal 

clusters, so as to evenly distribute the energy consumed by 

the nodes. Using fuzzy logic approach, the CHs were 

selected. Nodes residual energy, nodes degree, and distance 

from the base station were used as the input variables, and 

the output variables were competition radius and rank. The 

algorithm was evaluated in different scenario consisting of 

different number of sensor nodes and position of base station, 

and has shown good result. However, random selection of 

preliminary CHs might result in selection of a low energy 

node as a CH in a cluster, thereby resulting in energy hole 

problem. 

 

In [13], a routing algorithm for WSN based on grid clustering 

that adopts a multi-hop mode of transmission was developed. 

The entire area was partitioned into uneven grids (clusters). 

Sensor nodes energy with their locations and levels were 

combined to optimize the electoral process of selecting 

functional nodes. The routing protocol showed significant 

enhancement in network lifetime, scalability, and energy 

consumption with comparison to other protocols. However, 

the sizes of the grid signifying clusters were defined at the 

initialization stage irrespective of the distribution of sensor 

nodes. Therefore, optimal cluster formation was not 

guaranteed.  

In [25], a clustering algorithm for WSN using Graph 

Partitioning was developed. They proposed a novel two-level 

hierarchical partitioning method for WSN that partitioned the 

system into clusters. In their approach, each cluster has a 

leader called CH that aggregates data within its cluster and 

forwards it to a super leader (leader of all CHs). The keen 

leader aggregated data from all CH nodes and transmitted 

them to the base station. The super leader was elected from 

among the CH nodes. Simulation results showed improvement 

in network efficiency and scalability. However, using single-

hop routing to forward data directly from all CHs to the super 

leader CH node is not ideal for the large-scale network 

because the CHs that are further away might deplete their 

energy faster. Also, re-electing super CH node from among 

the CH nodes might result in more overheads.  

 

It is evident from the literature reviewed above that numerous 

researches have been done on reducing energy consumption 

in a WSN. Cluster formation, CH selection, the establishment 

of an appropriate route to the base station, and hotspot 

problems are significant challenges faced in the design of 

clustering algorithms for WSN. Quite some researchers 

conducted research using different approaches to design a 

routing protocol for WSN but did not consider addressing 

some of the challenges mentioned above. To address the 

issues of clustering and CH selection, inter-cluster 

transmission, and hotspot problem associated with most of 

the reviewed literature, this research used a spectral-based 

technique to segment the network into clusters optimally, 

reduced overhead of CH nodes by introducing CM nodes in 

each cluster to aid in inter-cluster data transmission to the 

base station, established appropriate multi-hop route for 

inter-cluster communication and addressed hotspot problem 

due to multi-hop routing using unequal clustering 

mechanism. 

 

3.   SPECTRAL CLUSTERING ALGORITHM 

Spectral clustering is a class of graph clustering algorithm 

that partitions a graph using information from the 

eigenvalues and eigenvectors of their adjacency matrix 

[23][20]. Reformulating the problem of clustering using 

graph can be stated as finding a split of a chart so that edges 

between groups that are the same are assigned a low weight 

(depicting dissimilarity between points in different clusters), 

and those within the same group are given high value 

(depicting similarity between points within the same set). 

Spectral graph partitioning uses the second eigenvector of a 
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graph's Laplacian to partition the chart and has been proved 

[28] to guarantee an approximate to optimal cut.  

Laplacian matrix is the difference between the diagonal 

matrix of a graph and the adjacency matrix denoted by [34]: 

L=D-A                           (1) 

Where L represents graph Laplacian matrix; D represents a 

diagonal matrix indicating the degree of the nodes, and A is 

the adjacency matrix representing a measure of similarity 

between nodes. 

The degree (𝑑𝑖) of a vertex (i) is defined as the sum of 

weights of the edges attached to it [14][18][17] as: 

di = ∑ 𝑊𝑖𝑗𝑛
𝑗=1                           (2) 

Where di denote the degree of a vertex, i and 𝑊𝑖𝑗 denote the 

weight of edges connecting the nodes. 

3.1   Normalized Cut (Ncut)  

The Ncut is a square measure of dissociation between 

subdivisions of a graph that is obtained by summing the ratio 

of the cut value of each partition to the total weights of nodes 

in each section [28]. In a graph, the perfect cut minimizes the 

Ncut amount [16]. To partition a graph into two separate 

parts A and B, the edges that connect the different parts are 

removed [18]. It is represented by:  

Cut (A, B) = ∑ 𝑒𝑖𝑗𝑖𝜖𝐴,𝑗𝜖𝐵                           (3) 

Where 𝑒𝑖𝑗represents the number of edges connecting parts A 

and B. 

Cut value is the measure of variation between parts A and B, 

which is the aggregate of all the edge weights between nodes 

in part A to nodes in part B.  

Ncut criterion avoids the unusual bias of segmenting smaller 

points by computing the cut based on the fraction of total 

connections of edges to all nodes in the graph, in preference 

to computing based on only the total weights of edges 

connecting the two partitions as in minimum cut criterion 

[28]. The Ncut is denoted by [35]: 

Ncut(A,B) = 
𝑐𝑢𝑡 (𝐴,𝐵)

𝑣𝑜𝑙 (𝐴)
  + 

𝑐𝑢𝑡 (𝐴,𝐵)

𝑣𝑜𝑙 (𝐵)
                        (4) 

Where cut (A, B) represents the aggregate of weights 

between nodes in part A and nodes in part B, that is, the 

number of edges crossing the partition going from one cluster 

to another; vol (A) represents the sum of all weights from 

nodes in A, that is the number of edges originating from the 

node within cluster A; and vol (B) represents the sum of all 

weights from nodes in B, that is the number of edges 

originating from the node within cluster B. 

Ncut considers inter-cluster connections, as well as intra-

cluster connections. To obtain optimal bi-partition, it has 

been proved in [28] that the second smallest eigenvector of 

generalized eigensystem is the real solution to the problem of 

normalized cut. 

3.2     Energy Consumption Model 

The model for radio energy dissipation used in computing the 

energy dissipation in the wireless transmission is illustrated 

in Figure 1. 

 

Figure 1. Radio Energy Dissipation Model [9] 

In this model, energy is used by the transmitting/receiving 

circuitry and power amplifier. The amount of energy 

consumed in conveying L-bits message over a distance d is 

represented by 𝐸𝑇𝑥(L,d) and that consumed in receiving L-

bit message is represented by 𝐸𝑅𝑥(L). The radio (transmit) 

electronics and power amplifier is powered by the expended 

energy from the transmitter, while the expended energy from 

the receiver powers the radio (receive) electronics [19]. The 

energy consumption rate for sending 1-bit data from the 

sender node 𝑆𝑖 to receiver node 𝑆𝑗 is denoted by [14]: 

{
𝑉𝑖 = {

𝑎𝑜 + 𝑃1   ×  𝑑 (𝑆𝑖  , 𝑆𝑗 )
2;        𝑑 (𝑆𝑖  , 𝑆𝑗) <  𝑑𝑜

𝑎𝑜 +  𝑃2   ×  𝑑 (𝑆𝑖  , 𝑆𝑗 )
4;        𝑑 (𝑆𝑖  , 𝑆𝑗) ≥  𝑑𝑜

𝑉𝑗 =  𝑎𝑜

     (5)              

Where 𝑉𝑖  denote the energy consumption for sending 1-bit 

data; 𝑉𝑗  denote the energy consumption for receiving 1-bit 

data;  𝑎𝑜  denote energy consumption of transmitting circuit; 

𝑃1and 𝑃2 denote control parameters of the transmitting 

amplifier; 𝑑 (𝑆𝑖 , 𝑆𝑗) denote geometry distance between the 

transmitting node 𝑆𝑖 and the receiving node 𝑆𝑗 ; and 𝑑𝑜 denote 

the threshold distance. 
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The control parameter 𝑃1 represents 𝐸𝑓𝑠, which denotes the 

amplifier energy in a free space model and 𝑃2 represents 𝐸𝑚𝑝 , 

which denotes the amplifier energy in a multipath channel 

model. 

Free space or multipath fading channel models are used 

considering the distance between the transmitter and the 

receiver. The open space model is used if the spacing d is less 

compared to a threshold distance 𝑑𝑜 while a multipath fading 

model is used when the distance is greater than the threshold 

distance 𝑑𝑜 [13][12]. The threshold distance is defined as 

[13]: 

𝑑𝑜 = √
𝐸𝑓𝑠

𝐸𝑚𝑝
 = √

𝑃1

𝑃2 
                                                           (6)  

4. ADAPTIVE GRID MULTIHOP ROUTING 

PROTOCOL (AGMRP) 

The following are the assumptions made for the system 

model: 

1. The network is a square field, which comprises randomly 

generated nodes and a base station. 

2. The sensor nodes are homogenous and energy-constrained. 

3. The nodes and base stations are assumed to be static. 

4. The base stations are powerful than the nodes and are 

connected to a replenished power. 

5. The network is supposed to have perfect data transmission. 

For evaluation, we perform a simulation of our protocol in a 

realistic setting. The simulation parameters are given in 

Table 1. 

The simulation was carried out using two network regions: 

200m × 200m and 400m × 400m, with base station 

coordinates (100m, 200m) and (200m, 400m), respectively. 

The nodes were randomly deployed in the sensing area. The 

base station broadcasted hello message to all the sensor nodes 

at a particular power level, and based on the RSS; each sensor 

node computed its approximate distance to the base station. 

The Euclidean distance was calculated using: 

d𝑆𝑖𝐵=√(𝑥𝑆𝑖 − 𝑥𝐵𝑆)2 + (𝑦𝑆𝑖 − 𝑦𝐵𝑆)2                     (7) 

Where d𝑆𝑖𝐵 represent the distance from the sensor node 𝑖 to 

the base station; 𝑥𝑆𝑖, 𝑦𝑆𝑖  are coordinates of sensor node 

𝑖 and 𝑥𝐵𝑆 , 𝑦𝐵𝑆 are coordinates of the base station. 𝑖 =

1,2,3, … … … … . . 𝑁 

Table 1. Simulation Parameters 

 

This helps them to determine the suitable power level to use 

in communicating with the base station. 

An imaginary ellipse was formed centered around each 

sensor node, with its central axis equal to the length of the 

field and minor axis similar to 1 4⁄  of the width of the sensor 

field. The nodes 𝑠𝑖 and 𝑠𝑗 are adjacent if there is an 

intersection between their ellipses. The adjacency matrix can 

be defined mathematically as: 

        𝐴𝑖𝑗 = { 1,  
(𝑥𝑠𝑖 − 𝑥𝑆𝑗)2

𝑎2
 +  

(𝑦𝑠𝑖 − 𝑦𝑆𝑗)2

𝑏2
< =  1 

0,     Otherwise
       (8)  

Where (𝑥𝑆𝑖 , 𝑦𝑆𝑖) and (𝑥𝑆𝑗 , 𝑦𝑆𝑗) are coordinates of sensor 

nodes 𝑠𝑖 and 𝑠𝑗 respectively; a and b are the length of the 

major and minor axis of the ellipse surrounding the nodes 

respectively; 𝑠𝑖 represents sensor node 𝑖 and 𝑠𝑗 represents 

sensor node j. 

Sensor nodes 𝑠𝑖 & 𝑠𝑗  are adjacent if the condition in equation 

(9) was satisfied; otherwise, they are not contiguous.  

     
(𝑥𝑠𝑖 − 𝑥𝑆𝑗)2

𝑎2  +  
(𝑦𝑠𝑖 − 𝑦𝑆𝑗)2

𝑏2  < =  1                              (9)                                                                 

Figure 2 shows a diagrammatic representation of two nodes 

𝑠𝑖 & 𝑠𝑗 with intersecting ellipse. 

 

Figure 2. Sensor Nodes Intersecting Ellipse 

(xsi,ysi) (xsj,ysj)

A B

b

a

Parameter Value 

Length of sensor field (M) 200m and 400m 

Number of sensor nodes (N) 400 

Base station Coordinate (100m, 200m) and 

(200m, 400m) 

The initial energy of nodes (𝐸𝑜) 0.5J 

Message size 800 bits 

𝐸𝑒𝑙𝑒𝑐(𝑎0) 50nJ/bit 

𝐸𝑓𝑠 (𝑃1) 10pJ/bit/𝑚2 

𝐸𝑚𝑝 (𝑃2 ) 0.0013pJ/bit/𝑚4 
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In Figure 2, the ellipse for the sensor node 𝑠𝑖 is labeled as A 

and that of sensor node 𝑠𝑗 is labeled as B. The figure shows 

a representation of the coordinates of two intersecting nodes 

with the axis length. Using the competition ellipse of sensor 

nodes, the adjacency matrix of the graph was formed.  

A ε 𝑅𝑁×𝑁 denote the adjacency matrix of the graph G  

After obtaining the adjacency matrix, the degree of nodes 

was computed. Using the degree of the sensor nodes, the 

diagonal matrix was formed. 

D ε 𝑅𝑁×𝑁 represents the diagonal matrix of graph G 

representing the degree of nodes. The degree of the nodes is 

represented by: 

𝑑𝑖=∑ 𝐴𝑖𝑗𝑗∈𝑣                                                            (10)                                                   

Where 𝑑𝑖 denotes the number of links from sensor node 𝑖 to 

some other node 𝑗. 

The graph Laplacian matrix was obtained using equation (1). 

The base station constructed the graph that corresponded to 

the WSN. The network was represented by an undirected 

graph G (V, E): Where V represents, sensor nodes (set of 

vertices), and E represents a set of edges that links two sensor 

nodes within the same ellipse.  

After obtaining the graph Laplacian matrix, the eigenvalues 

and corresponding eigenvectors were calculated. The 

eigenvector that corresponded to the second smallest 

eigenvalue was determined and sorted in ascending order. At 

each point, the Ncut value was computed. The point with the 

minimum Ncut indicating the best cut was determined. The 

graph was split at the point with the minimum Ncut. The 

chart was recursively repartitioned until the optimal number 

of partitions was obtained. The pseudo-code for the spectral 

clustering algorithm is as shown: 

 

ALGORITHM: Spectral graph partitioning using Ncut  

Input: Adjacency matrix A 

Output: Graph partitions 

Compute D = diag(deg (A));   // 

Diagonal matrix of the degrees of the matrix A 

Compute L = D – A;     // 

Laplacian matrix 

Solve for second smallest eigenvector: 

Normalized cut: Lx= 𝜆Dx; 

Sort the second smallest eigenvector 𝑥2 

Calculate Normalized cut 

Split graph into partitions at the minimum Ncut 

 

Figure 3 shows the pictorial representation of column-wise 

partitions and grids (clusters). 

 
               (a)                          (b)                            (c) 

Figure 3. Pictorial Representation of Partition and Grids 

The computation of grid height in each partition using the 

concept of the Pythagoras theorem is pictorially shown in 

Figure 3. 

From Figure 3.3a, 

 𝑐2 = 𝑎2 + 𝑏2        

               𝑎2 = 𝑐2 - 𝑏2 

  a = √𝑐2 − 𝑏2 

Comparing Figure 3.3a with Figure 3.3b and 3.3c; a ≡

𝑚𝑎𝑥ℎ, 𝑏 ≡ 𝑤, and c ≡  𝑑𝑜. The maximum height required 

for a grid in each partition referred to as maxh, is computed 

using: 

 maxh = √𝑑𝑜
2 −  𝑤2                                              (11)                                             

The number of grids per column (n) referred to as the grid 

Height of grid (h) = M n⁄                        (13) 

count is given by: 

Gridcount (n) = Ceil (M maxh⁄ )                      (12) 

Where M = length of the sensor field and maxh = maximum 

height of the grid. The height of the grids (h) in each partition 

(column) was calculated using: 

The threshold distance (𝑑0) is represented by:  

Threshold distance (𝑑0)= kM         (14) 

Where k = 0.45 

The partitions obtained were column-wise. The number of 

sensor nodes per column, and the column width (w) were 

obtained. The maximum grid height was computed using the 

max h
do

w

do

w

max h
ca

b

M
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concept of Pythagoras theorem, as shown in equation (11). It 

was assumed that in each grid (cluster), the distance between 

any two communicating nodes is less than 𝑑𝑜 (i.e d < 

𝑑𝑜). Therefore, in computing the height of each grid, the 

diagonal was chosen to be 𝑑𝑜 because it is the maximum 

distance between two communicating nodes. As such, only 

the free space model was used in computing the energy 

consumed for intra-cluster communication, thereby 

minimizing energy consumption.                

Finally, the partitions (columns) were further divided into 

grids signifying clusters. To avoid the hotspot problem that 

may occur due to multi-hop routing, the grid sizes were 

varied based on the distance to the base station. In each 

partition with an odd number of grids (grid count), the middle 

grid was assigned the value of the computed height (h) in 

equation (13). Then, the grid sizes above it closer to the base 

station were decreased by a fraction of the height, while those 

below it was increased. But, for an even number of grids (grid 

count) in a partition, the number of grids were divided into 

two (upper and lower), and the value of h was decreased by 

a fraction for the upper half closer to the base station and 

increased for the lower half farther away from the base 

station. 

Suppose the grid count (n) that is the number of grids in each 

partition is 5. The grid sizes were varied, as shown in Figure 

4. 

 

Figure 4. Varying of Grid Size 

Figure 4 shows a representation of grid size computation in 

each partition to avoid the hotspot problem. 

M = ℎ1 + ℎ2 + ℎ3 + ℎ4 + ℎ5        (15) 

M = (h – 0.1h) + (h – 0.05h) + h + (h + 0.05h) + (h + 0.1h) 

     = h – 0.2h + h  - 0.1h + h + h + 0.1h + h + 0.2h 

     = h + h + h + h + h 

 Therefore, M = 5h = nh                       (16) 

Equation (15) was derived from Figure 4. From equation 

(13), it can be observed that the length of the field was equal 

to the number of grids in a partition multiplied by the 

calculated height (h) as shown in equation (16). 

To develop the functional node selection algorithm, the CM 

and CH nodes were selected as follows:  

1. CM selection:  

Using residual energy and sensor nodes distance to the base 

station, CM nodes were chosen in each cluster. The distance 

from the node of each cluster to the base station was 

computed using: 

 

  𝑑𝑆𝑐𝐵 = √(𝑥𝑆𝑖 −  𝑥𝐵𝑆)2 + (𝑦𝑆𝑖 −  𝑦𝐵𝑆)2       (17) 

Where 𝑑𝑆𝑐𝐵 represents the distance from the sensor node in 

each cluster to the base station; 𝑥𝑆𝑖 and 𝑦𝑆𝑖  represents x and 

y coordinates of node 𝑖; 𝑥𝐵𝑆 represents x-coordinate of the 

base station and 𝑦𝐵𝑆 represents the y-coordinate of the base 

station. The normalized energy level and normalized distance 

to the base station were calculated for each node 𝑖 using 

equations (18) and (19), respectively. 

 

 𝑁𝑒𝑆𝑖
= 

𝐸𝑆𝑖

max
𝑗∈𝐶

𝐸𝑆𝑗
                         (18) 

         

     𝑁𝑑𝑆𝑖𝐵
 = 

𝑑𝑆𝑖𝐵

max
𝑗∈𝐶

𝑑𝑆𝑗𝐵
                           (19) 

         

Where 𝑁𝑒𝑆𝑖
 represents the normalized energy of sensor node 

𝑖; 𝐸𝑆𝑖 represents residual energy of sensor node 𝑖;  max
𝑗∈𝐶

𝐸𝑆𝑗  

represents the energy of the node with the maximum residual 

energy within the cluster; 𝑁𝑑𝑆𝑖𝐵
 represents the normalized 

distance of node 𝑖 to the base station; 𝑑𝑆𝑖𝐵 represents the 

distance of the sensor node 𝑖 to the base station, and max
𝑗∈𝐶

𝑑𝑆𝑗𝐵 

represents the distance of the node with the maximum 

distance to the base station. The weighting for each sensor 

node was computed using: 

 

 𝑊𝑖= 𝑁𝑒𝑆𝑖
 × (1 − 𝑁𝑑𝑆𝑖𝐵

)                       (20) 

     

Where 𝑊𝑖 represents the weight of sensor node 𝑖. 

After computing weights for each sensor node, the sensor 

node with maximum weighting was selected as CM in each 

cluster. It is defined mathematically as 
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 𝐶𝑀𝑐= max (𝑊𝑖)                        (21) 

       

Where 𝐶𝑀𝑐 represents the CM node in each cluster. 

 

2. CH Selection: 

CH nodes were selected using residual energy and distance 

of sensor nodes to the cluster centroid. For each cluster, the 

centroid was obtained using: 

 

 𝑥𝑐=
∑ 𝑥𝑆𝑖

𝑁
𝑖=1

𝑁𝑐
                                                             (22)                                                         

𝑦𝑐=
∑ 𝑦𝑆𝑖

𝑁
𝑖=1

𝑁𝑐
                                                             (23) 

Where 𝑥𝑐  and 𝑦𝑐 represents x and y coordinates of the cluster 

centroid; 𝑁𝑐  represent a number of nodes in the cluster; 𝑖 and 

j are indexes representing sensor nodes 𝑖 ∈ (1, ... … … N) 

and j ∈ (1, … … … N) respectively. In a cluster, the distance 

from each sensor node (𝑆𝑖) to the cluster centroid was 

calculated using: 

 

 𝑑𝑆𝑖𝐶= √(𝑥𝑆𝑖 −  𝑥𝑐)2 + (𝑦𝑆𝑖 − 𝑦𝑐)2                      (24) 

   

Where 𝑑𝑆𝑖𝐶  represents the distance from sensor node 𝑖 (𝑠𝑖) to 

cluster centroid. The normalized energy level and normalized 

distance from centroid were calculated for each sensor node 

𝑆𝑖 in a cluster using:  

 

 𝑁𝑒𝑆𝑖
 = 

𝐸𝑆𝑖

max
𝑗∈𝐶

𝐸𝑆𝑗
                        (25) 

      

     𝑁𝑑𝑆𝑖𝐶
 = 

𝑑𝑆𝑖𝐶

max
𝑗∈𝐶

𝑑𝑆𝑗𝐶
                           (26)   

Where 𝑁𝑑𝑆𝑖𝐶
 is the normalized distance of node 𝑖 to cluster 

centroid and max
𝑗∈𝐶

𝑑𝑆𝑗𝐶  represents the node within the cluster 

with the maximum distance to the cluster centroid. The 

weighting for each sensor node was computed using:  

 

 𝑊𝑖= 𝑁𝑒𝑆𝑖
 × (1 − 𝑁𝑑𝑆𝑖𝐶

)                       (27)   

After computing weights for each sensor node, the sensor 

node with maximum weighting was selected as CH in each 

cluster. It is defined mathematically as: 

 𝐶𝐻𝑐= max (𝑊𝑖)                        (28) 

     

Where 𝐶𝐻𝑐 represents the CH node in each cluster. 

 

A multi-hop routing algorithm between CM nodes of each 

cluster was developed as follows: Each sensor node sensed 

data and transmitted the data to their respective CHs. The 

sensed data was aggregated by the CHs and forwarded to 

their CM nodes. The CM nodes near the base station 

transmitted data to it directly; otherwise, they transmitted via 

the next-hop CM node. The Flowchart showing multi-hop 

routing and data transmission step is shown in Figure 5. 

The steps followed to transmit data to the base station are 

illustrated in Figure 5. 

4.1    Simulation Results 

In this work, the connectedness between nodes was modeled 

by using a "1" if nodes were within the range of each other 

or a "0" if they were not.  The network was represented as a 

graph in the form of an Adjacency matrix. The Adjacency 

matrix was formed after identifying those sensor nodes that 

were adjacent using an ellipse formed around each node. 

After obtaining the adjacency matrix, the degree of nodes 

was computed. The diagonal matrix was then developed 

using the degree of nodes. The graph Laplacian matrix was 

then calculated.  

                             

 

Figure 5. Flowchart of Multi-hop and Data Transmission 

Step 

Start

End

CH transmits data to respective CM

CH aggregates data

Sensor node senses data and transmit to 

respective CH

CM node transmits data to next-hop 

(nearest CM)

CM node transmits data to BS

Is CM node near the BS?

Yes

No
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4.1.1  First scenario of AGMRP 

After obtaining the graph Laplacian matrix, the eigenvalues 

and eigenvectors were computed. The eigenvector that 

corresponded to the second smallest eigenvalue was 

determined and permutated. At each point, the Normalized 

cut (Ncut) value was calculated, and the point with the 

minimum Ncut was determined.  

The Ncut achieved optimal clustering, which prolonged the 

network lifetime by balancing loads among the sensor nodes. 

The graph was split at the point with the minimum Ncut as 

shown in Figure 4.5 

Figure 6. Splitting Point with Minumun Ncut Value for 

Scenario1 

In Figure 6, the splitting point of the graph that has the 

minimum Ncut value representing the best cut in the first 

scenario is shown. From the plot, the minimum Ncut amount 

indicated the position of optimal bi-partitioning. Repeating 

the process also repartitioned the larger part of the graph. 

After recomputing and permutating for the larger part, the 

chart was split at the point with the minimum Ncut, as shown 

in Figure 7. 

 

Figure 7. Splitting Point with Minimum Ncut for the Larger 

Partition in Scenario1 

In Figure 7, the splitting point of the larger part of the graph 

for the first scenario is shown. The optimal partitions 

obtained by the algorithm is shown in Figure 8. 

 

Figure 8. Optimal Partitions Obtained in Scenario1 

Figure 8 shows the partitions obtained by the developed 

algorithm for the first scenario. The sections were divided 

into grids signifying clusters, as shown in Figure 9. 

Figure 9. The Grid Partitioning for Scenario1 

In Figure 9, the grids obtained in each column after the 

partitioning of the network in the first scenario are shown. 

The sensor nodes were distributed uniformly over the sensing 

area. It can be observed that by using the spectral graph 

partitioning technique, optimal clustering was achieved. 

4.1.2 Second scenario of AGMRP 

After obtaining the graph Laplacian matrix, the eigenvalues 

and eigenvectors were computed. The eigenvector that 



Zaria Journal of Electrical Engineering Technology, Department of Electrical Engineering, Ahmadu Bello University, Zaria – Nigeria. 
Vol. 9 No. 2, September 2020. ISSN: 0261 – 1570. 

33 
 

corresponds to the second smallest eigenvalue was 

determined and permutated.  

At each point, the Ncut value was calculated, and the point 

with the minimum Ncut was determined. The graph was split 

at the point with the minimum Ncut, as shown in Figure 10. 

 

Figure 10. Splitting Point with Minimum Ncut Value for 

Scenario2 

In Figure 10, the splitting point of the graph that has the 

minimum Ncut value representing the best cut in the second 

scenario is shown. The first partition of the chart was 

repartitioned by repeating the process.  

At each point, the Ncut value was computed, and the point 

with the minimum Ncut was determined.  

The graph was split at the point with the minimum Ncut, as 

shown in Figure 11. 

 

Figure 11. Splitting point with Minimum Ncut for the First 

Partition in Scenario2 

In Figure 11, the splitting point of the first partition of the 

graph for the second scenario is shown. The second partition 

of the graph obtained in Figure 10 was also repartitioned.  

The graph was split at the point with the minimum Ncut, as 

shown in Figure 12. 

 

Figure 12. Splitting point with Minimum   Ncut for the 

Second Partition in Scenario2 

In Figure 12, the splitting point of the second partition of the 

graph that has the minimum Ncut value for the second 

scenario is shown. The optimal partitions obtained by the 

algorithm are shown in Figure 13. 

 

Figure 13. Optimal Partitions Obtained for Scenario2 

Figure 13 shows the partitions obtained by the developed 

algorithm for the second scenario. The partitions were 

divided into grids signifying clusters, as shown in Figure 14. 
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Figure 14. The Grid Partitioning for Scenario2 

In Figure 14, the grids obtained in each column after the 

partitioning of the network in the second scenario are shown. 

The nodes were distributed uniformly over the sensing area. 

It can be observed that by using the spectral graph 

partitioning technique, optimal clustering was achieved. 

LEACH, FUCA, and EEMRP protocols were replicated and 

compared with the developed AGMRP protocol. The 

performances were evaluated as follows: 

1. Network lifetime  

The round of death occurrence for the 1st, 100th, 200th, 300th 

and 400th node in both scenarios are as follows:  

a) First Scenario 

The 1st node death in LEACH, FUCA, EEMRP, and AGMRP 

occurred at 493rd, 548th, 539th, and 706th round, respectively. 

The 100th node death in LEACH, FUCA, EEMRP, and 

AGMRP occurred at 522nd, 597th, 799th, and 819th round, 

respectively. The 200th node death in LEACH, FUCA, 

EEMRP, and AGMRP occurred at 529th, 612th, 815th, and 

859th round, respectively. The 300th node death in LEACH, 

FUCA, EEMRP, and AGMRP occurred at 538th, 623rd, 836th, 

and 891th round, respectively. The 400th node death in 

LEACH, FUCA, EEMRP, and AGMRP occurred at 544th, 

629th, 883rd, and 916th round, respectively.  

The end of the 1st, 100th, 200th, 300th and 400th nodes and 

round of occurrence in LEACH, FUCA, EEMRP, and 

AGMRP are shown in Figure 15. 

 

Figure 15. Bar chart of Node death in Scenario1 

Figure 15 is a bar chart showing the death of 1st, 100th, 200th, 

300th and 400th node. The result showed that there is an 

improvement in network lifetime in AGMRP compared to 

the other protocols because the time of occurrence of the First 

Node Death (FND) was delayed. The result showed that 

network lifetime had been improved by 43.21%, 28.83%, and 

30.98% compared to LEACH, FUCA, and EEMRP, 

respectively.  

b) Second Scenario 

The 1st node death in LEACH, FUCA, EEMRP, and AGMRP 

occurred at 384th, 391st, 319th, and 627th round, respectively. 

The 100th node death in LEACH, FUCA, EEMRP, and 

AGMRP occurred at 464th, 455th, 501st, and 737th round, 

respectively. The 200th node death in LEACH, FUCA, 

EEMRP, and AGMRP occurred at 479th, 472nd, 568th, and 

765th round, respectively. The 300th node death in LEACH, 

FUCA, EEMRP, and AGMRP occurred at 496h, 487th, 627th, 

and 805th round, respectively. The 400th node death in 

LEACH, FUCA, EEMRP, and AGMRP occurred at 505th, 

493rd, 720th, and 830th round, respectively.  

The death of the 1st, 100t, 200th, 300th and 400th nodes and 

round of occurrence in LEACH, FUCA, EEMRP, and 

AGMRP are shown in Figure 16. 

 

Figure 16. Bar Chart of Node Death in Scenario2 
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Figure 16 is a bar chart showing the death of 1st, 100th, 200th, 

300th and 400th node. The result showed that there is an 

improvement in network lifetime in AGMRP compared to 

the other protocol because the time of occurrence of the First 

Node Death (FND) was delayed. The result showed that 

network lifetime had been improved by 63.28%, 60.36%, and 

99.35% compared to LEACH, FUCA, and EEMRP, 

respectively. The reason for the low performance of EEMRP 

for the other algorithms in terms of FND in scenario2 was as 

a result of the following: 

i. Scenario2 has a lower number of sensor nodes per unit area 

(density). 

ii. EEMRP has a high number of grids for scenario2. 

iii. Due to reason (i) and (ii), EEMRP has grids with very few 

sensor nodes, which end up been overworked as CH/ CM 

nodes, leading to their early death. 

iv. All the other algorithms have a system of checking the 

minimum number of sensor nodes per cluster, which makes 

them perform better. 

It can be observed that the 1st, 100th, 200th, 300th, and 400th 

node death occurred at different times in both scenarios. This 

is because all nodes do not consume the same amount of 

energy in every round due to varying distances from the base 

station. However, clustering and hierarchical routing 

protocol aim at balancing the load among sensor nodes.  

2. Total energy consumption  

The Total Residual Energy (TRE) and Total Energy 

Consumed (TEC) in all the scenarios are as follows: 

a) First Scenario 

The TRE in scenario 1 for LEACH, FUCA, EEMRP, and 

AGMRP are shown in Figure 17. 

 

Figure 17. TRE in Scenario1  

Figure 17 gives the total remaining energy in every round of 

transmission for LEACH, FUCA, EEMRP, and AGMRP for 

the first scenario. The energy decreases faster in LEACH, 

FUCA, and EEMRP than in AGMRP. 

The TEC in scenario1 for LEACH, FUCA, EEMRP, and 

AGMRP are shown in Figure 18. 

 

Figure 18. TEC in Scenario1 

Figure 18 shows the graphical representation of the TEC 

versus the number of rounds for all the protocols for the first 

scenario. It can be seen that the TEC in AGMRP was lower 

at each round compared to LEACH, FUCA, and EEMRP. 

The energy was exhausted in LEACH, FUCA, and EEMRP 

between round 500 to 600, 600 to 700, and 800 to 900, 

respectively. This showed that AGMRP has lower energy 

consumption. At around 400, the result showed that energy 

consumption had been reduced by 38.72%, 26.82%, and 

4.60% compared to LEACH, FUCA, and EEMRP, 

respectively.  

b) Second Scenario 

The TRE in scenario2 for LEACH, FUCA, EEMRP, and 

AGMRP are shown in Figure 19. 

 

Figure 19. TRE in Scenario2  
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Figure 19 gives the total remaining energy in every round of 

transmission for LEACH, FUCA, EEMRP, and AGMRP for 

the second scenario. The energy decreases faster in LEACH, 

FUCA, and EEMRP than in the AGMRP.  

The TEC in scenario2 for LEACH, FUCA, EEMRP, and 

AGMRP are shown in Figure 20. 

 

Figure 20. TEC in Scenario2  

Figure 20 shows the graphical representation of the total 

energy consumed versus the number of rounds for all the 

protocols using the second scenario. It can be seen that the 

TEC in AGMRP was lower at each round compared to 

LEACH, FUCA, and EEMRP. The energy was exhausted in 

LEACH, FUCA, and EEMRP between round 500 to 600, 400 

to 500, and 700 to 800, respectively. This showed that 

AGMRP has lower energy consumption. At around 400, the 

result showed that energy consumption had been reduced by 

39.28%, 39.71%, and 28.58% compared to LEACH, FUCA, 

and EEMRP, respectively.  

Based on the results obtained in both scenarios, it can be 

observed that AGMRP reduced energy consumption in the 

network, thereby prolonged the network lifetime. 

The gradient of the TRE and TEC were approximately 

constant throughout. This indicates a continuous rate of 

sensor nodes energy depletion, which was as a result of 

effective load balancing among the sensor nodes. 

3. Number of alive nodes 

The number of active nodes in all the scenarios is as follows: 

a) First Scenario 

The number of alive nodes in LEACH, FUCA, EEMRP, and 

AGMRP is shown in Figure 21. 

 

Figure 21. Number of Alive Nodes in Scenario1 

The graphical representation of the number of alive nodes 

versus the number of rounds in the first scenario for all the 

protocols is shown in Figure 21. It can be seen that in 

LEACH, all the nodes were alive at around 0 to 492. The 

death of the first node occurred at about 493, and the last 

node death occurred at around 549. In FUCA, all the nodes 

were alive at around 0 to 547. The end of the first node 

occurred at about 548, and the last node death occurred at 

around 636. In EEMRP, all the nodes were alive at around 0 

to 538. The end of the first node occurred at about 539, and 

the last node death occurred at around 882.  

In AGMRP, all the nodes were alive at around 0 to 705. The 

death of the first node occurred at about 706, and the last 

node death occurred at around 915. This shows that there 

were more alive nodes at each round in AGMRP as a result 

of a balanced load among the sensor nodes. Furthermore, 

considering the residual energy of nodes, node density, and 

distance to the base station in selecting functional nodes (CH 

and CM) has led to a reduction in energy consumption. It 

thereby resulted in less number of dead nodes. 

b)  Second Scenario 

The number of alive nodes in LEACH, FUCA, EEMRP, and 

AGMRP is shown in Figure 22. 

 

Figure 22. Number of Alive Nodes in Scenario2 
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The graphical representation of the number of alive nodes 

versus the number of rounds in the second scenario for 

LEACH, FUCA, EEMRP, and AGMRP is shown in Figure 

22. It can be seen that in LEACH, all the nodes were alive at 

around 0 to 383. The death of the first node occurred at about 

384, and the last node death occurred at around 506. In 

FUCA, all the nodes were alive at around 0 to 390. The end 

of the first node occurred at about 391, and the last node 

death occurred at around 493. In EEMRP, all the nodes were 

alive at around 0 to 318. The end of the first node occurred at 

about 319, and the last node death occurred at around 719. 

In AGMRP, all the nodes were alive at around 0 to 626. The 

death of the first node occurred at about 627, and the last 

node death occurred at around 829. This shows that there 

were more alive nodes at each round in AGMRP as a result 

of a balanced load among the sensor nodes. Moreover, 

considering the residual energy of nodes, node density, and 

distance to the base station in selecting functional nodes (CH 

and CM) has led to a reduction in energy consumption. It 

thereby resulted in less number of dead nodes. 

Also, the node death in AGMRP occurred more steady and 

gradual when compared to the other protocols. This indicated 

effective load balancing among the sensor nodes in AGMRP. 

Based on the results obtained, it can be observed that 

reducing the energy consumption conserved the limited 

energy of the sensor nodes. Thereby extending the network 

lifetime. 

5.   CONCLUSION 

In this paper, we proposed an adaptive grid multi-hop routing 

protocol for a homogeneous WSN using spectral graph 

partitioning technique, which conserved the limited energy 

and extended the network lifetime. As a means of validation, 

LEACH, FUCA, and EEMRP routing protocols were 

replicated and their performances compared with the 

developed AGMRP protocol, using network lifetime, 

number of alive nodes, and energy consumption as metrics. 

Simulation results showed that AGMRP performs better in 

each scenario compared to LEACH, FUCA, and EEMRP. 

The work indicated that optimizing the grid regions, 

addressing hotspot problems and considering residual 

energy, node density (cluster centroid), distance to the base 

station in functional node (CH and CM) selection have a 

positive effect on improving the performance of the protocol. 

Also, reducing the overhead of CH nodes by introducing CM 

nodes in each cluster aided in reducing energy consumption. 

The developed protocol conserved the limited energy of the 

nodes by reducing energy consumption through balancing 

the load among the sensor node, hence extended the network 

lifetime. 

The following possible areas of further works are 

recommended for further research: 

1. The implementation of the developed algorithm on a live 

WSN, to ascertain the robustness of the algorithm in a 

real-life scenario where path loss, various disturbances, 

and un-modeled non-linearity affect the system. 

2. Improvement of the algorithm for a dynamic WSN, to 

ascertain the robustness of the algorithm in situations 

where the positions of the sensor nodes are active. 

3. Development of a weighted communication graph based 

on the calculated probability of link failure estimated 

using Signal to Noise Ratio (SNR) for every 

communication link. 
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