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ABSTRACT 

This paper presents a framework for assessing the complexity of adaptive equalization 

algorithms in a linearly dispersive channel that produces unknown distortion. Three 

algorithms are investigated including the Least Mean Squares (LMS), Recursive Least 

Squares (RLS), and Recursive Least Squares Lattice (RLSL) algorithms with respect to the 

mean square error (MSE) and the sample convergence speed. The simulation results 

reveal several insights: In terms of channel dispersion, the MSE performance of the LMS 

deteriorates by up to 40 % when the channel eigenvalue spread doubles. In addition, the 

convergence speed of LMS reduces by up to 50% for the same increase in channel spread 

and is invariant to the filter order. The same observation is applicable to the RLS and 

RLSL algorithms. The RLS algorithm gives the highest MSE performance for practical 

signal to noise ratio (SNR) ranges; It outperforms the LMS scheme by up to 50% and the 

RLSL by up to 20%. In terms of convergence speed, the RLS algorithm converges fastest at 

around 100 data samples and the LMS is the slowest requiring 800 samples while the 

RLSL algorithm requires up to 200 samples to converge. Observation of other metrics of 

the RLS and RLSL algorithms including the last tap weight coefficient of the LMS/RLS and 

the steady-state regression coefficient of the RLSL reveal the symmetry and asymmetry in 

their statistics respectively. The choice of the equalization algorithm to be used depends on 

a number of design tradeoffs including the propagation environment, the SNR sensitivity, 

and the computational power. 
 . 

1. INTRODUCTION 

Equalization is the technique of reversing the 

distortion encountered by a signal that is transmitted 

through a wireless channel that is subject to multipath 

fading and other forms of channel distortion. In this 

regard, several types of equalization techniques have 

been proposed and studied in recent works. The Least 

Mean Squares (LMS) algorithm is based on a 

stochastic gradient search method [1] where a step 

size must be selected to update a set of weight 

coefficients and this selection must be made to ensure 

that the tap weights converge [2]. However, the slow 

convergence rate and the need for long training 

sequences are the major disadvantages of the LMS 

algorithm as noted in [2] where a fast-start-up 

modified LMS (FSU-M-LMS) algorithm based on 

channel matched filter (CMF) was proposed to 

increase the convergence speed and performance of 

the LMS. Further, the authors in [3] proposed a 

variable step-size LMS adaptive algorithm which uses 

the gradient of the filter coefficient vector to 

accelerate the convergence speed while ensuring the 

convergence accuracy. The step size update is adjusted 

to enhance the ability of the algorithm to resist noise 

interference. 

A normalized form of the LMS algorithm (NLMS) 

that is independent of the step-size parameter is 

studied in [4] where its performance is compared to 

the standard LMS scheme with regard to the 

convergence speed. The results show that the 

normalized least mean square (NLMS) algorithm 

converges faster than the LMS algorithm where the 

design of the adaptive filter is based on the limited 

knowledge of its input signal statistics. More recent 

studies have proposed improved NLMS schemes 

like[5] where an NLMS style variable tap-length 

(VTL) algorithm is proposed to efficiently normalize 

the step-size in the update equation for the tap-length 
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and a fractional gradient is incorporated with the 

weight-update equation of the adaptive filter. The 

results demonstrated a robust performance of the 

proposed algorithm in a time-varying environment. 

The Recursive Least Squares (RLS) scheme is a 

family of algorithms which use a windowing 

technique and a forgetting factor to ensure exponential 

windowing while avoiding the need to solve an 

associated linear system by back-substitution which 

may lead to ill-conditioning as discussed in [6]. The 

robustness of the RLS has been exploited in adaptive 

filtering where a minimum-disturbance (MD) 

constraint with a sparsity-promoting penalty and a 

regularization factor to control the contributions of 

both the MD constraint and the sparsity-promotion is 

introduced to the standard RLS [7]. Analytical and 

simulation results demonstrate the increased 

robustness and lower misalignment attribute of the 

algorithm which is benchmarked with a scheme where 

the forgetting factor is adjusted manually to obtain the 

best performance. 

Different from existing work, this paper presents a 

holistic analysis of the computational complexity 

performance of the standard LMS, the NLMS, and the 

RLS algorithms. The steady-state MSE convergence 

of each scheme is studied in the context of a wireless 

channel which introduces an unknown distortion to 

signal transmissions. Specifically, the contributions in 

this paper are listed as: 

-  A communication system that generates binary 

phase-shift keying (BPSK) signals is modeled 

which is subjected to a multi-path channel 

characterized by time and frequency varying 

response and additive white gaussian noise 

(AWGN). 

- Four fading channels with three path gains are 

studied with various eigenvalue spreads to 

capture the different degrees of channel 

distortion. 

- The effect of the eigenvalue spread, filter order 

and the step-size parameter and a comparison of 

learning curves based on the MSE performance 

of each algorithm is presented. 

- A performance comparison in terms of the 

average number of samples required to attain 

steady-state convergence in each scheme is 

provided. In addition, insights are provided on 

the design factors to be considered in selecting 

the appropriate equalization scheme. 

 

2. SYSTEM DESIGN AND METHODOLOGY 

The system design and methodology used in the 

computation complexity analyses of the adaptive 

equalization algorithms in a linearly dispersed 

channel is as explained in this section. 

2.1 Communication Design and Adaptive Filter 

Stage 

The proposed communication system is modeled 

where binary phase-shift key (BPSK) data is generated 

at the data source and transmitted into the wireless 

channel. The channel is modeled as a multipath 

channel having different path gains/attenuations, ℎ𝑖 

where 𝑖 is the time sample index of a channel. The 

noise parameter is modeled as a Gaussian process with 

zero mean and power spectral density of 𝑁𝑜  having a 

typical value of 174 dBm/Hz. The system also 

comprises an equalization stage which features a 

linear filter and an adaptive algorithm block, modeled 

as a feedback stage to the filter and a feedforward 

stage to both the transmitter and the receiver modules 

of the system. Specifically, four channels with three 

path gains per channel which account for the time 

diversity are studied within the context of the 

communication system as illustrated in Fig. 1. and 

Table 1, respectively. 

Table 1. Different Multipath Channels Under Investigation 

Index 

ℎ(1) ℎ(2) ℎ(3) 

   

Channel 1 

0.2194 1 0.2194 

   

Channel 2 

0.2798 1 0.2798 

   

Channel 3 

0.3365 1 0.3365 

   

Channel 4 

0.3887 1 0.3887 
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Fig. 1. Block Diagram of the communication system 

showing the adaptive equalization stage 

 

2.2 Adaptive Equalization Algorithms 

The adaptive equalization algorithms of interest are 

the LMS, NLMS, and RLS.  

2.2.1 LMS 

The LMS algorithm is a stochastic gradient search 

algorithm which is based on the gradient search 

method. A one-dimensional quadratic surface is 

searched iteratively for the optimal weight solution 

which is assumed to exist a priori. Based on the 

search, the weight vector of filter coefficients are 

updated iteratively. This method avoids solving the 

Wiener-Hopf equations directly which is 

computationally intensive and time-consuming. 

However, a key parameter which is the step-size must 

be selected to update the weight coefficients. This 

selection must be made to satisfy the tight bounds 

provided by the second-order analysis in order for the 

tap-weights to converge. The bound relates the step-

size with the channel eigenvalues. 

Data: 

 

𝑀 = filter order 

µ= step size 

𝑁 =  𝑛𝐼𝑇𝐸𝑅 

Initialization; 

𝒉= 𝑧𝑒𝑟𝑜𝑠(𝑀) 

Computation; 

for𝑗 =  0, 1, 2, . . . , 𝑁do 

𝑥(𝑗)  =  [𝑥(𝑗), 𝑥(𝑗 − 1), … , 𝑥(𝑗 − 𝑀 +  1)]𝑇  

        𝑒(𝑗)  =  𝑑(𝑗) − 𝒉𝑯(𝑗)𝒙(𝑗) 

       𝒉(j + 1)  =  𝒉(𝑗) +  µ𝒆∗(𝑗)𝒙(𝒋) 

end 

Algorithm 1: LMS Algorithm 

 

2.2.2 NLMS 

The NLMS which is independent of the step-size 

parameter is studied in comparison with the LMS 

algorithm. This form does not utilize the step-size in 

updating the weights. 

Data: 

 

𝑀 = filter order 

𝜆 = forgetting factor 

𝛿 = value to initialize 𝑃(0) 

𝑁 = 𝑛𝐼𝑇𝐸𝑅 

 

Initialization; 

𝑤(𝑗)  = 0 

𝑥(𝑘) = 0, 𝑘 = −𝑝, … , −1 

d(k) = 0, 𝑘 = −𝑝, … , −1 

𝑃(0)  =  𝛿𝐼, where 𝐼 is the identity matrix of rank 𝑝 +

1 

 

Computation; 

for 𝑗 =  0, 1, 2, . . . , 𝑁 do 

 

𝒙(𝑗)  =  [𝑥(𝑗), 𝑥(𝑗 − 1), . . . , 𝑥(𝑗 − 𝑀)]𝑇 
 

   𝛼(𝑗)  = 𝑑(𝑗)  −  𝒙𝑇(𝑗)𝒘(𝑗 − 1)  

         𝒈(𝒋)  =  𝑷(𝒋

− 𝟏)𝒙(𝒋){𝝀 + 𝒙𝑻(𝒋)𝑷(𝒋

− 𝟏)𝒙(𝒋)}−𝟏 

 

end 

 

Algorithm 2: NLMS Algorithm 

 

2.2.3 RLS 

This algorithm uses a windowing technique where a 

forgetting factor is chosen to ensure exponential 

windowing and samples closer to the current sample 

are weighted more while de-emphasizing the samples 
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farther away from the current sample. The RLS also 

avoids solving the normal equations directly and 

instead runs a recursive loop where the Kalman gain 

vector and a priori error are used in updating the filter 

weights. 

Initialization: 

 

for 𝑖 =  0, 1, 2, . . . , 𝑁  do 

𝛿(−1, 𝑖)  =  𝛿𝐷(−1, 𝑖)  =  0 (𝑖𝑓𝑓 𝑥(𝑗 
= 0,   𝑓𝑜𝑟 𝑗 <  0)) 

 

𝜀𝑏𝑚𝑖𝑛

𝑑 (−1, 𝑖)  =  𝜀𝑓𝑚𝑖𝑛

𝑑 (−1, 𝑖)  = 𝜀  

𝛾(−1,1) =  1 

 𝑒𝑏(−1, 𝑖)  =  0 

end 

for 𝑗 > 0 do  

 𝛾(𝑗, 0) =  1 

  

 𝑒𝑏(𝑘, 0)  =  𝑒𝑓(𝑘, 0)  =  𝑥(𝑘) 

 𝜀𝑏𝑚𝑖𝑛

𝑑 (𝑗, 0) =      𝜀𝑓𝑚𝑖𝑛

𝑑 (𝑗, 0)  =

              𝑥2(𝑘)  +  𝜆𝜀𝑓𝑚𝑖𝑛

𝑑 (𝑘 − 1, 0) 

 

 𝑒(𝑘, 0) =  𝑑(𝑘) 

 for  𝑖 =  0, 1, … , 𝑁 do 

 𝛿(𝑗, 𝑖)  =  𝛿(𝑗 − 1, 𝑖)  +

                            
𝑒𝑏(𝑗−1,1)𝑒𝑓(𝑗,𝑖)

𝛾(𝑗−1,𝑖)
 

                 𝛾(𝑗, 𝑖 + 1)  =  𝛾(𝑗, 𝑖)  −  
𝑒𝑏

2(𝑗, 𝑖)

𝜀𝑏𝑚𝑖𝑛

𝑑 (𝑗, 𝑖)
 

        κ𝑏(j, i) =  
𝛿(𝑗, 𝑖)

𝜀𝑓𝑚𝑖𝑛

𝑑 (𝒋, 𝒊)
 

   κ𝑓(j, i) =  
𝛿(𝑗,𝑖)

𝜀𝑏𝑚𝑖𝑛
𝑑 (𝒋−𝟏,𝒊)

 

 𝑒𝑏(𝑗, 𝑖 + 1)  = 𝑒𝑏(𝑗 −
1, 𝑖)− κ𝑏(j, i)𝑒𝑓(𝑗, 𝑖)   

𝑒𝑓(𝑗, +1) = 𝑒𝑓(𝑗 − 1, 𝑖)

−                      κ𝑓(𝑗, 𝑖)𝑒𝑏(𝑗, 𝑖) 

             𝜀𝑏𝑚𝑖𝑛

𝑑 (𝑗, 𝑖 + 1)

= 𝜀𝑏𝑚𝑖𝑛

𝑑 (𝑗 − 1, 𝑖)

− 𝛿(𝑗, 𝑖)𝜅𝑏(𝑗, 𝑖) 

𝜀𝑓𝑚𝑖𝑛

𝑑 (𝑗, 𝑖 + 1) = 𝜀𝑓𝑚𝑖𝑛

𝑑 (𝑗, 𝑖) − 𝛿(𝑗, 𝑖)𝜅𝑓(𝑗, 𝑖) 

 

 Feedforward Filtering: 

  𝛿𝐷(𝑗, 𝑖) =  𝜆𝛿𝐷(𝑗 − 1, 𝑖)  +

              
𝑒(𝑗,𝑖)𝑒𝑏(𝑗,𝑖)

𝛾(𝑗,𝑖)
 

𝜈𝑖(𝑗)  =
𝛿𝐷(𝑗, 𝑖)

𝜀𝑏𝑚𝑖𝑛

𝑑 (𝑗, 𝑖)
 

 𝑒(𝑗, 𝑖 + 1) =  𝑒(𝑗, 𝑖)  −  𝜈𝑖(𝑗)𝑒𝑏(𝑗, 𝑖)  
 

 end 

end 

 

Algorithm 3: RLS Algorithm 

 

2.3 Computational Complexity Analyses 

2.3.1 Pre-experimental computation and data 

collection 

In this step, the input parameters of each equalization 

algorithm are computed offline including the 

autocorrelation matrix, 𝑅 of each channel condition 

and their respective eigenvalues. In addition, the 

minimum 𝜆𝑚𝑖𝑛, maximum 𝜆𝑚𝑠𝑥, and eigenvalue 

spreads 
𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛
 are computed within the MATLAB 

environment. The results are illustrated in Table 2. 

2.3.2 Description of Equalization Algorithms    

Each equalization technique is implemented using 

MATLAB scripts and in-built functions. An outline of 

the steps involved in each equalization scheme is 

provided in the algorithmic environments. 

 

3. RESULTS AND DISCUSSION 

3.1. Effect of Eigenvalue Spread 

The selected parameters for plotting the metrical 

curves for each algorithm are given in Table 3. For the 

RLS algorithm, the step size is replaced by a small 

value of 0.01 which is chosen to initialize the inverse 

correlation matrix of the RLS algorithm. By relating 

the eigenvalue spread given in Table II with the 

convergence speed, it can be concluded that the 

convergence speed of the LMS decreases with 

increased eigenvalue spread. Also, the LMS 

performance with respect to MSE deteriorates with 

increased eigenvalue spread which is consistent with 

theory. The RLS algorithm converges faster than the 

LMS, converging in about 100 samples for all channel 
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conditions as illustrated in Fig. 2. The channel 1 

steady-state MSE is the least with a value of 0.00014 

while the channel 4 MSE is the largest with a value of 

0.0006. This shows that the RLS performance 

degrades with increased eigenvalue spreads as is the 

case with the LMS implementation but is less sensitive 

to the channel eigenvalue spread variations. 

 

Table 2. Minimum, Maximum and Eigenvalue spread for each 

channel 

Index 

   

  𝜆𝑚𝑖𝑛 𝜆𝑚𝑎𝑥   

   

𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛

 
 

Channel 1 

0.3329 2.0285 6.0931 

     

Channel 2 

0.2126 2.3751 11.1711 

     

Channel 3 

0.1245 2.7255 21.8892 

     

Channel 4 

0.0646 3.0694 47.4993 

     

 

Table 3. Parameters for Investigating effect of Eigenvalue spread 

on LMS. 

Step size parameter  0.075 

Filter order 11 

Number of data samples 1000 

Number of experiments 500 

SNR in dB 40 

 

3.2. RLS vs LMS for Small SNR Regime 

The performance of the RLS and LMS for a small 

SNR of 10 dB are compared with an LMS step size of 

0.075 and an RLS delta value of 0.01 and the plots are 

shown in Fig. 3. The RLS exhibits lower MSE and 

faster convergence than the LMS in the low SNR 

regime 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Learning Curves for RLS under different channel 

conditions 

. 

 

Fig. 3. RLS vs LMS Performance for small SNR regime. 

3.3. Steady State Regression Coefficients vs. Tap 

Weight Filter Coefficients. 

In this section, the tap weight coefficients of the 

LMS/RLS scheme are compared with the steady-state 

regression coefficients of the RLSL algorithm. Figs. 4 

and 5 show that the center regression coefficient the 
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highest magnitude of 1, however compared to the tap 

weight coefficients of the RLS case, it is not 

symmetric about the other regression coefficients. 

 

Fig. 4. The convergence of RLS tap weight coefficient for 

channel 1. 

 

Fig. 5. Steady-state regression coefficients of RLSL for 

filter order 𝑀 = 1 

4. CONCLUSION 

The performance and robustness of the LMS, RLS, 

and RLSL have been investigated in this work. 

Several insights can be drawn from the complexity 

analyses: The LMS has the lowest complexity and 

slowest convergence speed of the three algorithms. It 

also has the highest steady-state MSE. It is constrained 

by the step-size parameter which is dependent on the 

eigenvalue spread under consideration and is therefore 

very sensitive to eigenvalue spread variations. The 

RLS has the highest complexity in terms of the order 

of operations but exhibits the least MSE values and 

fastest convergence speed. 

It is much less sensitive to eigenvalue spread than the 

LMS and is independent of the step size parameter. 

The RLSL comes in between the RLS and LMS 

performance with more computational complexity and 

lower MSE than the LMS and less computational 

complexity but higher MSE than the RLS. It 

converges by an order of magnitude faster than the 

LMS and converges slower in slightly greater sample 

time than the RLS. It is also insensitive to eigenvalue 

spread and step size like the RLS. The choice of which 

algorithm to use depends on the bias in the system 

design where computing memory, size of data sets, 

computational power and the operating SNR range are 

key factors which should be taken into consideration. 
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