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ABSTRACT 
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INTRODUCTION 

Fractional differential calculus which is a 

generalization of differential calculus have received 

much interest in Physics, Mathematics and Applied 

sciences [1-7]. Several physical phenomena can be 

modeled by applying the theory of fractional 

calculus. Recently, the fractional calculus has a wide 

range of application in the mathematical modeling of 

real world. Recently, fractional differential equations 

played a major role in diverse areas such as 

Viscoelasticity, Biology, Physics, Engineering and 

many other applications. 

However, several fractional calculus does 

not possess exact analytical solutions and thus 

numerical methods are developed and applied in 

solving them. Several numerical techniques have 

been applied to obtain solutions to fractional 

calculus. Some of those numerical techniques are: 

Adomian Decomposition Method [8], Variational 

Iteration Method [9, 10], Optimal Homotopy 

Asymptotic Method [4], Homotopy Analysis Method 

[4, 11]. Time –fractional Cauchy reaction-diffusion 

equations [12, 13] is one of the major class of 

fractional partial differential equations. The time–

fractional Cauchy reaction- Cauchy-reaction 

diffusion equations specify many forms of nonlinear 

systems in physical sciences, biological sciences and 

engineering sciences [14, 15]. The numerical 

solutions of Cauchy reaction-diffusion equation had 

been received by means of the usage of several 

numerical approaches, namely, Homotopy 

perturbation Method [11, 16], Generalized 

differential transform and finite difference methods 

[17], Sumudu Iterative Method [18].  The primary 

aim of this paper is to establish Aboodh Transform 

Method (ATM) for the numerical solution of the 

time-fractional Cauchy reaction diffusion equation. 

This method is a modification of the work of Aboodh 

[19]. This method obtained its result in a series form 

which converges rapidly. 

 

Definition of basic terms 

Here, the primary definitions and features of 

fractional calculus and Aboodh transform were given 

to be used in this work. 

Definition 1 

A real function  𝑓(𝑥), 𝑥 > 0, is said to be in space 

𝐶𝜇,   𝜇𝜖ℝ , if there exists a real number 𝑝, (𝑝 > 𝜇), 

such that 𝑓(𝑥) = 𝑥𝑝𝑓1(𝑥), where 𝑓1(𝑥) ∈ 𝐶[0, ∞) 

and it is said to be in space 𝐶𝜇
𝑚 if 𝑓(𝑚) ∈ 𝐶𝜇, 𝑚 ∈ ℕ. 

[22]. 

 

Definition 2 

The Riemann-Liouville fractional integral operator of 

order ∝≥ 0 of a function 𝑓(𝑥) ∈ 𝐶𝜇, 𝜇 ≥ −1 is 

defined as [11] 

𝐼∝𝑓(𝑥) = {

1

Γ(𝛼)
∫ (𝑥 − 𝑡)𝛼−1𝑓(𝑡)𝑑𝑡, 𝛼 > 0, 𝑥 > 0

𝑥

0

𝐼0𝑓(𝑥) = 𝑓(𝑥), 𝛼 = 0
 

     (1) 

Where Γ(. ) is the Gamma function 

The following features of operator 𝐼𝛼, which will be 

used in the context of this paper are as follow. For 

𝑓 ∈ 𝐶𝜇, 𝜇, 𝛾 = −1, 𝛼, 𝛽 ≥ 0. 

 𝐼𝛼𝐼𝛽𝑓(𝑥) = 𝐼𝛽𝐼𝛼𝑓(𝑥) = 𝐼𝛼+𝛽𝑓(𝑥) 

     

  (2) 

 𝐼𝛼𝑥𝛾 =
Γ(𝛾+1)

Γ(𝛼+𝛾+1)
𝑥𝛼+𝛾  

     (3) 

Definition 3 

The fractional derivative of 𝑓(𝑥) in the Caputo sense 

is defined as [11] 

𝐷𝛼𝑓(𝑥) = 𝐼𝑛−𝛼𝐷𝑛𝑓(𝑥) =
1

Γ(𝑛−𝛼)
∫ (𝑥 −

𝛼

0

𝑡)𝑛−𝛼−1𝑓(𝑛)(𝑡)𝑑𝑡    (4) 
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Definition 4 

The Aboodh Transform defined over the set of 

function 𝐴 = {𝑓(𝑡): ∃ 𝑀, 𝑘1, 𝑘2 > 0, |𝑓(𝑡)| <

𝑀𝑒−𝑣𝑡   } is represented by the formular [19] 

𝐴[𝑓(𝑡)] = 𝑘(𝑣) =
1

𝑣
∫ 𝑓(𝑡)

∞

0
𝑒−𝑣𝑡𝑑𝑡, 𝑡 ≥ 0, 𝑘1 ≤

𝑣 ≤  𝑘2    

  (5) 

Definition 5 

The Mittag-Leffler function 𝐸𝛼  with 𝛼 > 0 is defined 

as [10] 

𝐸𝛼(𝑧) = ∑
𝑧𝛼

Γ(𝑛𝛼+1)
∞
𝑛=0    

     (6) 

Definition 6 

The Aboodh Transform of the Caputo fractional 

derivative is defined as  

𝐴[𝐷𝑡
𝑛𝛼𝑢(𝑥, 𝑡)] = 𝑣𝑛𝛼𝐴𝑢[(𝑥, 𝑡)] − ∑

𝑢(𝑘)(𝑥, 0)

𝑣2𝑛𝛼+𝑘

𝑛−1

𝑘=0

 

for 𝑛 − 1 < 𝛼 < 𝑛, 𝑛 = 1, 2, 3, ⋯ 

 

MATERIALS AND METHODS 

 

Aboodh transform method 

To illustrate the basic idea of Aboodh Transform 

Method (ATM), there is need to consider the 

following equation with the prescribed initial 

condition as 

𝐷𝑡
𝑛𝛼𝑢(𝑥, 𝑡) + 𝐿𝑢(𝑥, 𝑡) + 𝑅𝑢(𝑥, 𝑡) = 𝑔(𝑥, 𝑡),          

𝑛 − 1 < 𝑛𝛼 ≤ 𝑛,         

 (7) 

𝑢(𝑥, 0) = ℎ(𝑥). 

Where 𝐷𝑡
𝑛𝛼𝑢(𝑥, 𝑡) is the Caputo fractional derivative 

operator, 𝐷𝑡
𝑛𝛼 =

𝜕𝑛𝛼

𝜕𝑡𝑛𝛼, 𝐿 is a linear differential 

operator, 𝑅 is the general nonlinear differential 

operator, 𝑔(𝑥, 𝑡) is the homogeneous term. 

Applying Aboodh Transform on both sides of 

equation (7), we have 

𝐴[𝐷𝑡
𝑛𝛼𝑢(𝑥, 𝑡)] + 𝐴[𝐿𝑢(𝑥, 𝑡) + 𝑅𝑢(𝑥, 𝑡)] =

𝐴[𝑔(𝑥, 𝑡)]  

  (8) 

Applying the differential properties of the Aboodh 

Transform, we have 

𝐴[𝑢(𝑥, 𝑡)] − 𝑣𝑛𝛼 ∑ 𝑢𝑘𝑛−1
𝑘=0 (𝑥, 0) + 𝑣𝑛𝛼𝐴[𝐿𝑢(𝑥, 𝑡) +

𝑅𝑢(𝑥, 𝑡) − 𝑔(𝑥, 𝑡) = 0]   (9) 

𝐴[𝑢(𝑥, 𝑡)] = 𝑣𝑛𝛼 ∑ 𝑢𝑘𝑛−1
𝑘=0 (𝑥, 0) − 𝑣𝑛𝛼𝐴[𝐿𝑢(𝑥, 𝑡) +

𝑅𝑢(𝑥, 𝑡) − 𝑔(𝑥, 𝑡)]            (10) 

 

Taking the Aboodh inverse on both sides of equation 

(10) 

𝑢(𝑥, 𝑡) = 𝐴−1[𝑣𝑛𝛼 ∑ 𝑢𝑘𝑛−1
𝑘=0 (𝑥, 0)] −

𝐴−1[𝑣𝑛𝛼𝐴[𝐿𝑢(𝑥, 𝑡) + 𝑅𝑢(𝑥, 𝑡) − 𝑔(𝑥, 𝑡)]]            

(11) 

 

Let assuming the following parameters: 

𝑓(𝑥, 𝑡) = 𝐴−1 [𝑣𝑛𝛼 ∑ 𝑢𝑘

𝑛−1

𝑘=0

(𝑥, 0) + 𝑣𝛼𝐴[𝑔(𝑥, 𝑡)]] 

𝑁(𝑢(𝑥, 𝑡)) = −𝐴−1[𝑣𝑛𝛼𝐴[𝑅𝑢(𝑥, 𝑡)]] 

𝐾(𝑢(𝑥, 𝑡)) = −𝐴−1[𝑣𝑛𝛼𝐴[𝐿𝑢(𝑥, 𝑡)]] 

Therefore, equation (11) can now be written as 

𝑢(𝑥, 𝑡) = 𝑓(𝑥, 𝑡) + 𝐾(𝑢(𝑥, 𝑡)) + 𝑁(𝑢(𝑥, 𝑡)),

      (12) 

Where 𝑓 is a known function, 𝐾 and 𝑁 are given 

linear and nonlinear term of 𝑢, respectively.   

The solution of Equation (12) can be written in the 

series form  

𝑢(𝑥, 𝑡) = ∑ 𝑢𝑖
∞
𝑖=0 (𝑥, 𝑡)  

              (13) 

We have 

𝐾(∑ 𝑢𝑖
∞
𝑖=0 ) = ∑ 𝐾(𝑢𝑖)

∞
𝑖=0   

        (14) 

The nonlinear term 𝑁 can be decomposed as 

𝑁(∑ 𝑢𝑖
∞
𝑖=0 ) = 𝑁(𝑢0) + ∑ {𝑁(∑ 𝑢𝑗

𝑖
𝑗=0 ) −∞

𝑖=0

(∑ 𝑢𝑗
𝑖
𝑗=0 )}       (15) 

 

Thus, equation (12) can be written in the following 

form 
∑ 𝑢𝑖

∞
𝑖=0 = 𝑓 + ∑ 𝐾(𝑢𝑖)

∞
𝑖=0 + 𝑁(𝑢0) +

∑ {𝑁(∑ 𝑢𝑗
𝑖
𝑗=0 ) − (∑ 𝑢𝑗

𝑖
𝑗=0 )}∞

𝑖=0                           (16) 

Defining the recurrence relation 

𝑢0 = 𝑓 

𝑢1 = 𝐾(𝑢0) + 𝑁(𝑢0), 
𝑢𝑟+1 = 𝐾(𝑢𝑟) + 𝑁(𝑢0 + 𝑢1 + ⋯ + 𝑢𝑟) −
𝑁(𝑢0 + 𝑢1 + ⋯ + 𝑢𝑟−1)        (17) 

We have 
(𝑢1 + ⋯ +  𝑢𝑟+1) = 𝐾(𝑢0 + 𝑢1 + ⋯ +  𝑢𝑟) +
𝑁(𝑢0 + 𝑢1 + ⋯ +  𝑢𝑟)         (18) 

Thus,  
∑ 𝑢𝑖

∞
𝑖=0 = 𝑓 + 𝐾(∑ 𝑢𝑖

∞
𝑖=0 ) + 𝑁(∑ 𝑢𝑖

∞
𝑖=0 ) 

         (19) 

The 𝑚-term approximate solution of equation (12) is 

written as  

𝑢 = 𝑢0 + 𝑢1 +  ⋯ + 𝑢𝑚−1  

  

         (20)  

RESULTS AND DISCUSSION   

Here, in view of showing the validity and 

applicability of the Aboodh Transform Method on 

Time-Fractional Cauchy Reaction-Diffusion 

Equations, the following examples will be 

considered. 

Example 1 

Examine the time-fractional Cauchy reaction-

diffusion equation [18] 

𝑢𝑡
∝(𝑥, 𝑡) = 𝑢𝑥𝑥(𝑥, 𝑡) − 𝑢(𝑥, 𝑡),  0 <∝≤ 1 

             (21) 

subject to initial conditions  

 𝑢(𝑥, 0) = 𝑒−𝑥 + 𝑥      

      

The exact solution of equation (21) is 𝑒−𝑥 + 𝑥𝑒−𝑡.  
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Taking the Aboodh Transform of equation (21) we 

have, 

𝐴[𝑢𝑡
∝(𝑥, 𝑡)] = 𝐴[𝑢𝑥𝑥(𝑥, 𝑡) − 𝑢(𝑥, 𝑡)] 

            (22) 

Applying the differential property of the Aboodh 

Transform 

𝑣∝𝑢(𝑥, 𝑣) −
𝑢(𝑥,0)

𝑣2−∝ = 𝐴[𝑢𝑥𝑥(𝑥, 𝑡) − 𝑢(𝑥, 𝑡)] 

             (23) 

𝑢(𝑥, 𝑣) =
𝑢(𝑥,0)

𝑣2 +
1

𝑣∝ 𝐴[𝑢𝑥𝑥(𝑥, 𝑡) − 𝑢(𝑥, 𝑡)] 

             (24) 

Taking the inverse Aboodh Transform on both sides 

of equation (24) 

𝑢(𝑥, 𝑡) = 𝐴−1 {
𝑢(𝑥,0)

𝑣2 } + 𝐴−1 {
1

𝑣∝ 𝐴[𝑢𝑥𝑥(𝑥, 𝑡) −

𝑢(𝑥, 𝑡)]}            (25) 

Substituting the initial value (𝑥, 0) = 𝑒−𝑥 + 𝑥
  

𝑢(𝑥, 𝑡) = 𝐴−1 {
𝑢(𝑥,0)

𝑣2 } + 𝐴−1 {
1

𝑣∝ 𝐴[𝑢𝑥𝑥(𝑥, 𝑡) −

𝑢(𝑥, 𝑡)]}                     (26) 

𝑢(𝑥, 𝑡) = 𝑒−𝑥 + 𝑥 + 𝐴−1 {
1

𝑣∝ 𝐴[𝑢𝑥𝑥(𝑥, 𝑡) − 𝑢(𝑥, 𝑡)]} 

           (27) 

𝑢0(𝑥, 𝑡) = 𝑒−𝑥 + 𝑥,   𝑢𝑛(𝑥, 𝑡) =

𝐴−1 {
1

𝑣∝ 𝐴[𝑢𝑛−1𝑥𝑥(𝑥, 𝑡) − 𝑢𝑛−1(𝑥, 𝑡)]}     

        (28) 

Other values of 𝑢(𝑥, 𝑡) can be obtained by applying 

the successive iteration 

𝑢𝑛(𝑥, 𝑡) = 𝐴−1 {
1

𝑣∝ 𝐴[𝑢𝑛−1𝑥𝑥(𝑥, 𝑡) − 𝑢𝑛−1(𝑥, 𝑡)]}

            (29) 

when 𝑛 = 1,   𝑢1(𝑥, 𝑡) = 𝐴−1 {
1

𝑣∝ 𝐴[𝑢0𝑥𝑥(𝑥, 𝑡) −

𝑢0(𝑥, 𝑡)]} 

𝑢1(𝑥, 𝑡) = 𝐴−1 {
1

𝑣∝
𝐴[𝑒−𝑥 − (𝑒−𝑥 + 𝑥)]} 

𝑢1(𝑥, 𝑡) =
−𝑥𝑡∝

Γ(∝ +1)
 

when 𝑛 = 2,   𝑢2(𝑥, 𝑡) = 𝐴−1 {
1

𝑣∝ 𝐴[𝑢1𝑥𝑥(𝑥, 𝑡) −

𝑢1(𝑥, 𝑡)]} 

𝑢2(𝑥, 𝑡) =
𝑥𝑡2∝

Γ(2 ∝ +1)
 

when 𝑛 = 3,   𝑢3(𝑥, 𝑡) = 𝐴−1 {
1

𝑣∝ 𝐴[𝑢2𝑥𝑥(𝑥, 𝑡) −

𝑢2(𝑥, 𝑡)]} 

𝑢3(𝑥, 𝑡) =
−𝑥𝑡3∝

Γ(3 ∝ +1)
 

when 𝑛 = 4,   𝑢4(𝑥, 𝑡) = 𝐴−1 {
1

𝑣∝ 𝐴[𝑢3𝑥𝑥(𝑥, 𝑡) −

𝑢3(𝑥, 𝑡)]} 

𝑢4(𝑥, 𝑡) =
𝑥𝑡4∝

Γ(4 ∝ +1)
 

⋮ 

𝑢𝑛(𝑥, 𝑡) = (−1)𝑛
𝑥𝑡𝑛∝

Γ(𝑛 ∝ +1)
 

Other terms of the iteration can be obtained by 

following the same principle. 

The approximate solution of equation (21) can be 

written as: 

𝑢(𝑥, 𝑡) = 𝑢0 + 𝑢1 + 𝑢2 + 𝑢3 + ⋯ + 𝑢𝑛 

𝑢(𝑥, 𝑡) = 𝑒−𝑥 + 𝑥 −
𝑥𝑡∝

Γ(∝+1)
+

𝑥𝑡2∝

Γ(2∝+1)
−

𝑥𝑡3∝

Γ(3∝+1)
+

𝑥𝑡4∝

Γ(4∝+1)
−

𝑥𝑡5∝

Γ(5∝+1)
+ ⋯ + (−1)𝑛 𝑥𝑡𝑛∝

Γ(𝑛∝+1)
                                                                                                     

(30) 

𝑢(𝑥, 𝑡) = 𝑒−𝑥 + 𝑥 (1 −
𝑡∝

Γ(∝+1)
+

𝑡2∝

Γ(2∝+1)
−

𝑡3∝

Γ(3∝+1)
+

𝑡4∝

Γ(4∝+1)
−

𝑡5∝

Γ(5∝+1)
+ ⋯ + (−1)𝑛 𝑡𝑛∝

Γ(𝑛∝+1)
)                                                                                                                

(31) 

The solution can be written in the form  

𝑢(𝑥, 𝑡) = 𝑒−𝑥 + 𝑥𝐸∝(−𝑡∝)   

            (32) 

The equation (32) is the approximate solution to 

equation (21). when ∝= 1 equation (32) becomes 

𝑢(𝑥, 𝑡) = 𝑒−𝑥 + 𝑥𝑒−𝑡 which is the exact solution for 

equation (21). 

The result obtained agrees with the solution in [18]. 

Example 2 

Considering the nonlinear time-fractional Cauchy 

reaction-diffusion equation [18] 

𝑢𝑡
∝(𝑥, 𝑡) = 𝑢𝑥𝑥 − 𝑢𝑥 + 𝑢𝑢𝑥𝑥 − 𝑢2 + 𝑢,  0 <∝≤ 1

         (33) 

 𝑢(𝑥, 0) = 𝑒𝑥        

     

  

 𝑢(𝑥, 𝑡) = 𝑒𝑥+𝑡 is the exact solution of equation (33) 

Applying the Aboodh Transform of equation (33) 

yields 
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𝐴[𝑢𝑡
∝] = 𝐴[𝑢𝑥𝑥 − 𝑢𝑥 + 𝑢𝑢𝑥𝑥 − 𝑢2 + 𝑢] 

             

(34) 

Applying the differential property of the Aboodh 

Transform 

𝑣∝𝑢(𝑥, 𝑣) −
𝑢(𝑥,0)

𝑣2−∝ = 𝐴[𝑢𝑥𝑥 − 𝑢𝑥 + 𝑢𝑢𝑥𝑥 − 𝑢2 + 𝑢]

            (35) 

𝑢(𝑥, 𝑣) =
𝑢(𝑥,0)

𝑣2 +
1

𝑣∝ 𝐴[𝑢𝑥𝑥 − 𝑢𝑥 + 𝑢𝑢𝑥𝑥 − 𝑢2 + 𝑢]

            (36) 

Taking inverse Aboodh Transform on both sides of 

equation (36) 

𝑢(𝑥, 𝑡) = 𝐴−1 {
𝑢(𝑥,0)

𝑣2 } + 𝐴−1 {
1

𝑣∝ 𝐴[𝑢𝑥𝑥 − 𝑢𝑥 +

𝑢𝑢𝑥𝑥 − 𝑢2 + 𝑢]}           (37) 

Substituting the initial value (𝑥, 0) = 𝑒𝑥  

𝑢(𝑥, 𝑡) = 𝐴−1 {
𝑢(𝑥,0)

𝑣2 } + 𝐴−1 {
1

𝑣∝ 𝐴[𝑢𝑥𝑥(𝑥, 𝑡) −

𝑢(𝑥, 𝑡)]}                      (38) 

𝑢0(𝑥, 𝑡) = 𝑒𝑥,   

 𝑢𝑛(𝑥, 𝑡) = 𝐴−1 {
1

𝑣∝ 𝐴[𝑢𝑛−1𝑥𝑥 − 𝑢𝑛−1𝑥 +

𝑢𝑛−1𝑢𝑛−1𝑥𝑥 − 𝑢2
𝑛−1 + 𝑢𝑛−1]}      

Other values of 𝑢(𝑥, 𝑡) can be obtained by applying 

the successive iteration 

𝑢𝑛(𝑥, 𝑡) = 𝐴−1 {
1

𝑣∝ 𝐴[𝑢𝑛−1𝑥𝑥 − 𝑢𝑛−1𝑥 +

𝑢𝑛−1𝑢𝑛−1𝑥𝑥 − 𝑢2
𝑛−1 + 𝑢𝑛−1]}           

(39) 

when 𝑛 = 1,   𝑢1(𝑥, 𝑡) = 𝐴−1 {
1

𝑣∝ 𝐴[𝑢0𝑥𝑥 − 𝑢0𝑥 +

𝑢0𝑢0𝑥𝑥 − 𝑢2
0 + 𝑢0]} 

𝑢1(𝑥, 𝑡) = 𝐴−1 {
1

𝑣∝
𝐴[𝑒𝑥 − 𝑒𝑥 + 𝑒𝑥𝑒𝑥 − 𝑒2𝑥 + 𝑒𝑥]} 

𝑢1(𝑥, 𝑡) =
𝑒𝑥𝑡∝

Γ(∝ +1)
 

when 𝑛 = 2,   𝑢2(𝑥, 𝑡) = 𝐴−1 {
1

𝑣∝ 𝐴[𝑢1𝑥𝑥 − 𝑢1𝑥 +

𝑢1𝑢1𝑥𝑥 − 𝑢2
1 + 𝑢1]} 

𝑢2(𝑥, 𝑡) =
𝑒𝑥𝑡2∝

Γ(2 ∝ +1)
 

when 𝑛 = 3,   𝑢3(𝑥, 𝑡) = 𝐴−1 {
1

𝑣∝ 𝐴[𝑢2𝑥𝑥 − 𝑢2𝑥 +

𝑢2𝑢2𝑥𝑥 − 𝑢2
2 + 𝑢2]} 

𝑢3(𝑥, 𝑡) =
𝑒𝑥𝑡3∝

Γ(3 ∝ +1)
 

when 𝑛 = 4,   𝑢4(𝑥, 𝑡) = 𝐴−1 {
1

𝑣∝ 𝐴[𝑢3𝑥𝑥 − 𝑢3𝑥 +

𝑢3𝑢3𝑥𝑥 − 𝑢2
3 + 𝑢3]} 

𝑢4(𝑥, 𝑡) =
𝑒𝑥𝑡4∝

Γ(4 ∝ +1)
 

when 𝑛 = 5,   𝑢4(𝑥, 𝑡) = 𝐴−1 {
1

𝑣∝ 𝐴[𝑢4𝑥𝑥 − 𝑢4𝑥 +

𝑢4𝑢4𝑥𝑥 − 𝑢2
4 + 𝑢4]} 

𝑢5(𝑥, 𝑡) =
𝑒𝑥𝑡5∝

Γ(5 ∝ +1)
 

 

𝑢𝑛(𝑥, 𝑡) =
𝑒𝑥𝑡𝑛∝

Γ(𝑛 ∝ +1)
 

Other terms of the iteration can be obtained by 

following the same principle. 

The approximate solution of equation (33) can be 

written as: 

𝑢(𝑥, 𝑡) = 𝑢0 + 𝑢1 + 𝑢2 + 𝑢3 + ⋯ + 𝑢𝑛 

𝑢(𝑥, 𝑡) = 𝑒𝑥 +
𝑒𝑥𝑡∝

Γ(∝+1)
+

𝑒𝑥𝑡2∝

Γ(2∝+1)
+

𝑒𝑥𝑡3∝

Γ(3∝+1)
+

𝑒𝑥𝑡4∝

Γ(4∝+1)
+

𝑒𝑥𝑡5∝

Γ(5∝+1)
+ ⋯ +

𝑒𝑥𝑡𝑛∝

Γ(𝑛∝+1)
          (40) 

𝑢(𝑥, 𝑡) = 𝑒𝑥 [1 +
𝑡∝

Γ(∝+1)
+

𝑡2∝

Γ(2∝+1)
+

𝑡3∝

Γ(3∝+1)
+

𝑡4∝

Γ(4∝+1)
+

𝑡5∝

Γ(5∝+1)
+ ⋯ +

𝑡𝑛∝

Γ(𝑛∝+1)
]        (41) 

The resulting solution can be written in the form  

𝑢(𝑥, 𝑡) = 𝑒𝑥𝐸∝(𝑡∝)    

     

       (42) 

The equation (42) is the approximate solution to 

equation (33). when ∝= 1 equation (42) becomes 

𝑢(𝑥, 𝑡) = 𝑒𝑥+𝑡 which is the exact solution of 

equation (33).  

The result obtained agrees with the solution in [18]. 

Example 3 

Considering the time-fractional Cauchy reaction-

diffusion equation [18] 

𝑢𝑡
∝(𝑥, 𝑡) = 𝑢𝑥𝑥(𝑥, 𝑡) − (1 + 4𝑥2)𝑢(𝑥, 𝑡),  0 <∝≤ 1

          (43) 

𝑢(𝑥, 0) = 𝑒𝑥2
      

      

The exact solution of equation (43) is 𝑢(𝑥, 𝑡) =

𝑒𝑥2
+ 𝑡.  

Taking the Aboodh Transform of equation (43) we 

have, 
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𝐴[𝑢𝑡
∝(𝑥, 𝑡)] = 𝐴[𝑢𝑥𝑥(𝑥, 𝑡) − (1 + 4𝑥2)𝑢(𝑥, 𝑡)]

          (44) 

Applying the differential property of the Aboodh 

Transform 

𝑣∝𝑢(𝑥, 𝑣) −
𝑢(𝑥,0)

𝑣2−∝ = 𝐴[𝑢𝑥𝑥(𝑥, 𝑡) − (1 +

4𝑥2)𝑢(𝑥, 𝑡)]         (45) 

𝑢(𝑥, 𝑣) =
𝑢(𝑥,0)

𝑣2 +
1

𝑣∝ 𝐴[𝑢𝑥𝑥(𝑥, 𝑡) − (1 +

4𝑥2)𝑢(𝑥, 𝑡)]         (46) 

Taking the inverse Aboodh Transform on each sides 

of equation (46) 

𝑢(𝑥, 𝑡) = 𝐴−1 {
𝑢(𝑥,0)

𝑣2 } + 𝐴−1 {
1

𝑣∝ 𝐴[𝑢𝑥𝑥(𝑥, 𝑡) −

(1 + 4𝑥2)𝑢(𝑥, 𝑡)]}               (47) 

Substituting the initial value 𝑢(𝑥, 0) = 𝑒𝑥2
, we have

  

𝑢(𝑥, 𝑡) = 𝑒𝑥2
+ 𝐴−1 {

1

𝑣∝ 𝐴[𝑢𝑥𝑥(𝑥, 𝑡) − (1 +

4𝑥2)𝑢(𝑥, 𝑡)]}          (48) 

𝑢0(𝑥, 𝑡) = 𝑒𝑥2
,    𝑢𝑛(𝑥, 𝑡) =

𝐴−1 {
1

𝑣∝ 𝐴[𝑢𝑛−1𝑥𝑥(𝑥, 𝑡) − (1 + 4𝑥2)𝑢𝑛−1(𝑥, 𝑡)]}    

      (49) 

Other values of 𝑢(𝑥, 𝑡) can be obtained by applying 

the successive iteration 

𝑢𝑛(𝑥, 𝑡) = 𝐴−1 {
1

𝑣∝ 𝐴[𝑢𝑛−1𝑥𝑥(𝑥, 𝑡) − (1 +

4𝑥2)𝑢𝑛−1(𝑥, 𝑡)]}       (50) 

when 𝑛 = 1,   𝑢1(𝑥, 𝑡) = 𝐴−1 {
1

𝑣∝ 𝐴[𝑢0𝑥𝑥(𝑥, 𝑡) −

(1 + 4𝑥2)𝑢0(𝑥, 𝑡)]} 

𝑢1(𝑥, 𝑡) = 𝐴−1 {
1

𝑣∝
𝐴[2𝑒𝑥2

+ 4𝑥2𝑒𝑥2

− (1 + 4𝑥2)(𝑒−𝑥 + 𝑥)]} 

𝑢1(𝑥, 𝑡) =
𝑒𝑥2

𝑡∝

Γ(∝ +1)
 

when 𝑛 = 2,   𝑢2(𝑥, 𝑡) = 𝐴−1 {
1

𝑣∝ 𝐴[𝑢1𝑥𝑥(𝑥, 𝑡) −

(1 + 4𝑥2)𝑢1(𝑥, 𝑡)]} 

𝑢2(𝑥, 𝑡) =
𝑒𝑥2

𝑡2∝

Γ(2 ∝ +1)
 

when 𝑛 = 3,   𝑢3(𝑥, 𝑡) = 𝐴−1 {
1

𝑣∝ 𝐴[𝑢2𝑥𝑥(𝑥, 𝑡) −

(1 + 4𝑥2)𝑢2(𝑥, 𝑡)]} 

𝑢3(𝑥, 𝑡) =
𝑒𝑥2

𝑡3∝

Γ(3 ∝ +1)
 

when 𝑛 = 4,   𝑢4(𝑥, 𝑡) = 𝐴−1 {
1

𝑣∝ 𝐴[𝑢3𝑥𝑥(𝑥, 𝑡) −

(1 + 4𝑥2)𝑢3(𝑥, 𝑡)]} 

𝑢4(𝑥, 𝑡) =
𝑒𝑥2

𝑡4∝

Γ(4 ∝ +1)
 

when 𝑛 = 5,   𝑢4(𝑥, 𝑡) = 𝐴−1 {
1

𝑣∝ 𝐴[𝑢4𝑥𝑥(𝑥, 𝑡) −

𝑢4(𝑥, 𝑡)]} 

𝑢5(𝑥, 𝑡) =
𝑒𝑥2

𝑡5∝

Γ(5 ∝ +1)
 

⋮ 

𝑢𝑛(𝑥, 𝑡) =
𝑒𝑥2

𝑡𝑛∝

Γ(𝑛 ∝ +1)
 

Other terms of the iteration can be obtained by 

following the same principle. 

The approximate solution of equation (43) can be 

written as: 

𝑢(𝑥, 𝑡) = 𝑢0 + 𝑢1 + 𝑢2 + 𝑢3 + ⋯ + 𝑢𝑛 

𝑢(𝑥, 𝑡) = 𝑒𝑥2
+

𝑒𝑥2
𝑡∝

Γ(∝+1)
+

𝑒𝑥2
𝑡2∝

Γ(2∝+1)
+

𝑒𝑥2
𝑡3∝

Γ(3∝+1)
+

𝑒𝑥2
𝑡4∝

Γ(4∝+1)
+

𝑒𝑥2
𝑡5∝

Γ(5∝+1)
+ ⋯ +

𝑒𝑥2
𝑡𝑛∝

Γ(𝑛∝+1)
         (51) 

𝑢(𝑥, 𝑡) = 𝑒𝑥2
(1 +

𝑡∝

Γ(∝+1)
+

𝑡2∝

Γ(2∝+1)
+

𝑡3∝

Γ(3∝+1)
+

𝑡4∝

Γ(4∝+1)
+

𝑡5∝

Γ(5∝+1)
+ ⋯ +

𝑡𝑛∝

Γ(𝑛∝+1)
)    (52) 

The result can be written in the form  

𝑢(𝑥, 𝑡) = 𝑒𝑥2
𝐸∝(𝑡∝)         (53) 

The equation (53) is the approximate solution to 

equation (43).  

When ∝= 1 equation (43) becomes: 

 𝑢(𝑥, 𝑡) = 𝑒𝑥2+𝑡            (54) 

Equation (54) is the exact solution for equation (43). 

The result obtained agrees with the solution in [18]. 

 

 CONCLUSION 

Aboodh Transform Method (ATM) has been applied 

in this paper, to obtain the approximate result for the 

time-fractional Cauchy Reaction–Diffusion 

Equations. The major benefit of this technique is the 

ability to give the solution in series of sequence 

which converges rapidly. The results obtained show 

that the Aboodh Transform Method is trustworthy 

and introduces a significant advancement in solving 

partial differential equations over existing methods.  
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